English

Express the Matrix a = ⎡ ⎢ ⎣ 4 2 − 1 3 5 7 1 − 2 1 ⎤ ⎥ ⎦ as the Sum of a Symmetric and a Skew-symmetric Matrix. - Mathematics

Advertisements
Advertisements

Question

Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.
Sum

Solution

\[Given: A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\]  

\[ A^T = \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix}\] 
\[Let X = \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\left( \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} + \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix} \right) = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix}\] 
\[ X^T = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix}^T = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix} = X\] 

\[Let Y = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\left( \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} - \begin{bmatrix}4 & 3 & 1 \\ 2 & 5 & - 2 \\ - 1 & 7 & 1\end{bmatrix} \right) = \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix}\] 
\[ Y^T = \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix}^T = \begin{bmatrix}0 & \frac{1}{2} & 1 \\ \frac{- 1}{2} & 0 & \frac{- 9}{2} \\ - 1 & \frac{9}{2} & 0\end{bmatrix} = - \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix} = - Y\] 
Thus, X is a symmetric matrix and Y is a skew - symmetric matrix .
\[Now, \] 

\[X + Y = \begin{bmatrix}4 & \frac{5}{2} & 0 \\ \frac{5}{2} & 5 & \frac{5}{2} \\ 0 & \frac{5}{2} & 1\end{bmatrix} + \begin{bmatrix}0 & \frac{- 1}{2} & - 1 \\ \frac{1}{2} & 0 & \frac{9}{2} \\ 1 & \frac{- 9}{2} & 0\end{bmatrix} = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix} = A\]


shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.5 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.5 | Q 5 | Page 61

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


Compute the products AB and BA whichever exists in each of the following cases:

A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`

 


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A = `[[2       -1],[3             2]]`  and B = `[[0         4],[-1          7]]`find 3A2 − 2B + I


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):

`A =-[[1             2         0],[-1        0           1]]`,`B=[[1       0],[-1        2],[0        3]]` and C= `[[1],[-1]]`


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.


If A=, find k such that A2 = kA − 2I2

 

If f (x) = x2 − 2x, find f (A), where A=


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


Find a 2 × 2 matrix A such that `A=[[1,-2],[1,4]]=6l_2`


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


Give examples of matrices
A and B such that AB ≠ BA


If A and B are square matrices of the same order, explain, why in general

(− B)2 ≠ A2 − 2AB + B2


A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


If `[2     1       3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.


If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If A and B are two square matrices of the same order, then AB = BA.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×