Advertisements
Advertisements
Question
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
Solution
\[Given: f\left( x \right) = x^3 + 4 x^2 - x\]
\[f\left( A \right) = A^3 + 4 A^2 - A\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 + 2 + 2 & 0 - 3 - 2 & 0 + 0 + 0 \\ 0 - 6 + 0 & 2 + 9 - 0 & 4 - 0 + 0 \\ 0 - 2 + 0 & 1 + 3 - 0 & 2 - 0 + 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix}\]
\[\]
\[ A^3 = A^2 A\]
\[ \Rightarrow A^3 = \begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix}\begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}0 - 10 + 0 & 4 + 15 - 0 & 8 - 0 + 0 \\ 0 + 22 + 4 & - 6 - 33 - 4 & - 12 + 0 + 0 \\ 0 + 8 + 2 & - 2 - 12 - 2 & - 4 + 0 + 0\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix}\]
\[\]
\[f\left( A \right) = A^3 + 4 A^2 - A\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix} + 4\begin{bmatrix}4 & - 5 & 0 \\ - 6 & 11 & 4 \\ - 2 & 4 & 2\end{bmatrix} - \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 & 19 & 8 \\ 26 & - 43 & - 12 \\ 10 & - 16 & - 4\end{bmatrix} + \begin{bmatrix}16 & - 20 & 0 \\ - 24 & 44 & 16 \\ - 8 & 16 & 8\end{bmatrix} - \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}- 10 + 16 - 0 & 19 - 20 - 1 & 8 + 0 - 2 \\ 26 - 24 - 2 & - 43 + 44 + 3 & - 12 + 16 - 0 \\ 10 - 8 - 1 & - 16 + 16 + 1 & - 4 + 8 + 0\end{bmatrix}\]
\[ \Rightarrow f\left( A \right) = \begin{bmatrix}6 & - 2 & 6 \\ 0 & 4 & 4 \\ 1 & 1 & 4\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.
If f (x) = x2 − 2x, find f (A), where A=
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
Give examples of matrices
A and B such that AB ≠ BA
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
Given an example of two non-zero 2 × 2 matrices A and B such that AB = O.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If A and B are two square matrices of the same order, then AB = BA.
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.
Let a, b, c ∈ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = `((a, b, c),(b, c, a),(c, a, b))` satisfies ATA = I, then a value of abc can be ______.