English

If A = `[[0 C -b],[-c 0 A],[B -a 0]]`And B =`[[A^2 Ab Ac],[Ab B^2 Bc],[Ac Bc C^2]]`, Show That Ab = Ba = O3×3. - Mathematics

Advertisements
Advertisements

Question

If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 
Sum

Solution

\[Here, \]

\[AB = \begin{bmatrix}0 & c & - b \\ - c & 0 & a \\ b & - a & 0\end{bmatrix}\begin{bmatrix}a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2\end{bmatrix}\]

\[ \Rightarrow AB = \begin{bmatrix}0 + abc - abc & 0 + b^2 c - b^2 c & 0 + b c^2 - b c^2 \\ - a^2 c + 0 + a^2 c & - abc + 0 + abc & - a c^2 + 0 + a c^2 \\ a^2 b - a^2 b + 0 & a b^2 - a b^2 + 0 & abc - abc + 0\end{bmatrix}\]

\[ \Rightarrow AB = \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}\]

\[ \Rightarrow AB = O_{3 \times 3} . . . \left( 1 \right)\]

\[\]

\[BA = \begin{bmatrix}a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2\end{bmatrix}\begin{bmatrix}0 & c & - b \\ - c & 0 & a \\ b & - a & 0\end{bmatrix}\]

\[ \Rightarrow BA = \begin{bmatrix}0 - abc + abc & a^2 c + 0 - a^2 c & - a^2 b + a^2 b + 0 \\ 0 - b^2 c + b^2 c & abc + 0 - abc & - a b^2 + a b^2 + 0 \\ 0 - b c^2 + b c^2 & a c^2 + 0 - a c^2 & - abc + abc + 0\end{bmatrix}\]

\[ \Rightarrow BA = \begin{bmatrix}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}\]

\[ \Rightarrow BA = O_{3 \times 3} . . . \left( 2 \right)\]

\[ \]

`\ \Rightarrow  AB=BA = O_{3 \times 3} `        [From eqs. (1) and (2)]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 13 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O

 

If [1 1 x] `[[1         0            2],[0           2         1],[2            1           0]] [[1],[1],[1]]` = 0, find x.


If 

 


Find the value of x for which the matrix product`[[2       0           7],[0          1            0],[1       -2       1]]` `[[-x         14x          7x],[0         1            0],[x           -4x             -2x]]`equal an identity matrix.


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


Give examples of matrices
A and B such that AB ≠ BA


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}"Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.

 

 


If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


For any square matrix write whether AAT is symmetric or skew-symmetric.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?


What is the total number of 2 × 2 matrices with each entry 0 or 1?


Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.


If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If  \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money (in Rs.) collected by schools CVC and KVS?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×