Advertisements
Advertisements
Question
If \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.
Options
3
4
6
7
Solution
7
\[Here, \]
\[A = \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^2 = A \times A\]
\[ \Rightarrow A^2 = \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}\cos^2 \frac{2\pi}{7} - \sin^2 \frac{2\pi}{7} & \left( - 2\cos\frac{2\pi}{7}\sin\frac{2\pi}{7} \right) \\ 2\cos\frac{2\pi}{7}\sin\frac{2\pi}{7} & \cos^2 \frac{2\pi}{7} - \sin^2 \frac{2\pi}{7}\end{bmatrix}\]
`⇒ A^2 =[[cos (4π )/7 -sin (4π )/7 ] , [ sin (4π )/7 cos (4π)/7] ]` `[[∵ cos^2 θ - sin^2 θ = cos 2 θ ],[ 2 sin θ cos θ = sin θ ]]`
\[ \Rightarrow A^3 = A^2 \times A\]
\[ \Rightarrow A^3 = \begin{bmatrix}\cos\frac{4\pi}{7} & - \sin\frac{4\pi}{7} \\ \sin\frac{4\pi}{7} & \cos\frac{4\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}\left( \cos \frac{4\pi}{7}\cos\frac{2\pi}{7} - \sin\frac{4\pi}{7}\sin\frac{2\pi}{7} \right) & \left( - \cos\frac{4\pi}{7}\sin\frac{2\pi}{7} - \sin\frac{4\pi}{7}\cos\frac{2\pi}{7} \right) \\ \left( \sin\frac{4\pi}{7}\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7}\sin\frac{2\pi}{7} \right) & \left( - \sin\frac{2\pi}{7}\sin\frac{4\pi}{7} + \cos\frac{4\pi}{7}\cos\frac{2\pi}{7} \right)\end{bmatrix}\]
`⇒ A^2 =[[cos (6π )/7 -sin (6π )/7 ] , [ sin (6π )/7 cos (6π)/7] ]` `[[∵ cos(A+B) = cos A cos B - sin A sin B ],[ sin (A+B) =sin A cos B + cos A sin B ]]`
Now we check if the pattern is same for k = 6.
Here,
\[A^6 = A^3 . A^3 \]
\[ \Rightarrow A^6 = \begin{bmatrix}\cos \frac{6\pi}{7} & - \sin\frac{6\pi}{7} \\ \sin\frac{6\pi}{7} & \cos\frac{6\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{6\pi}{7} & - \sin\frac{6\pi}{7} \\ \sin\frac{6\pi}{7} & \cos\frac{6\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^6 = \begin{bmatrix}\cos \frac{12\pi}{7} & - \sin\frac{12\pi}{7} \\ \sin \frac{12\pi}{7} & \cos \frac{12\pi}{7}\end{bmatrix}\]
Now, we check if the pattern is same for k = 7.
Here,
\[A^7 = A^6 \times A\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos \frac{12\pi}{7} & - \sin\frac{12\pi}{7} \\ \sin \frac{12\pi}{7} & \cos \frac{12\pi}{7}\end{bmatrix} \begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos \frac{14\pi}{7} & - \sin\frac{14\pi}{7} \\ \sin \frac{14\pi}{7} & \cos \frac{14\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos 2\pi & - \sin2\pi \\ \sin 2\pi & \cos 2\pi\end{bmatrix} \left[ \because \frac{14\pi}{7} = 2\pi \right]\]
\[ = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
So, the least positive integral value of k is 7.
APPEARS IN
RELATED QUESTIONS
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
If `A=[[0,0],[4,0]]` find `A^16`
If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
If A and B are square matrices of the same order, explain, why in general
(A + B)2 ≠ A2 + 2AB + B2
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) ₹50 (ii) ₹20 (iii) ₹40
The number of attempts made in three villages X, Y and Z are given below:
(i) (ii) (iii)
X 400 300 100
Y 300 250 75
Z 500 400 150
Find the total cost incurred by the organisation for three villages separately, using matrices.
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If A, B are square matrices of order 3, A is non-singular and AB = O, then B is a
If \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is
Disclaimer: option (a) and (d) both are the same.
If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3