English

If `A=[[0,0],[4,0]]` Find `A^16` - Mathematics

Advertisements
Advertisements

Question

If `A=[[0,0],[4,0]]` find `A^16`

Sum

Solution

\[Given: A = \begin{bmatrix}0 & 0 \\ 4 & 0\end{bmatrix}\]
\[Here, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 0 \\ 4 & 0\end{bmatrix}\begin{bmatrix}0 & 0 \\ 4 & 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 + 0 & 0 + 0 \\ 0 + 0 & 0 + 0\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
\[ A^4 = A^2 A^2 \]
\[ \Rightarrow A^4 = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
\[ \Rightarrow A^4 = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
\[ A^8 = A^4 A^4 \]
\[ \Rightarrow A^8 = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
\[ \Rightarrow A^8 = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
\[ A^{16} = A^8 A^8 \]
\[ \Rightarrow A^{16} = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
\[ \therefore A^{16} = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
 Thus, `A^16` is a null matrix .

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 50 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated product:

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Show that AB ≠ BA in each of the following cases:

`A= [[5    -1],[6        7]]`And B =`[[2       1],[3         4]]`


Show that AB ≠ BA in each of the following cases:

`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`

 


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


If [1 −1 x] `[[0       1           -1],[2           1             3],[1          1             1]]   [[0],[1],[1]]=`= 0, find x.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


If [1 1 x] `[[1         0            2],[0           2         1],[2            1           0]] [[1],[1],[1]]` = 0, find x.


Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.


If f (x) = x2 − 2x, find f (A), where A=


`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that

\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α}  & \sqrt{2}\text{sin n  α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin  n  α} \end{bmatrix}\] for all n ∈ N.

 


Give examples of matrices
A and B such that AB ≠ BA


Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ CA ≠ O.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


Express the matrix \[A = \begin{bmatrix}4 & 2 & - 1 \\ 3 & 5 & 7 \\ 1 & - 2 & 1\end{bmatrix}\] as the sum of a symmetric and a skew-symmetric matrix.

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.


Write matrix A satisfying   ` A+[[2      3],[-1   4]] =[[3     6],[- 3     8]]`.


If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×