English

If `A=[[0,-x],[X,0]],[[0,1],[1,0]]` and `X^2=-1,` Then Show that `(A+B)^2=A^2+B^2` - Mathematics

Advertisements
Advertisements

Question

If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`

Sum

Solution

Given:\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}, B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] and x2 = −1

To show: (A + B)2 = A2 + B2

LHS:

\[A + B = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix} + \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + 0 & - x + 1 \\ x + 1 & 0 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]

\[ \left( A + B \right)^2 = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + \left( 1 - x \right)\left( 1 + x \right) & 0 + 0 \\ 0 + 0 & \left( x + 1 \right)\left( 1 - x \right) + 0\end{bmatrix}\]

\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (1)\]

R. H. S

\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]

\[ A^2 = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 - x^2 & 0 + 0 \\ 0 + 0 & - x^2 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} . . . (2)\]

\[\]

\[ B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ B^2 = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + 1 & 0 + 0 \\ 0 + 0 & 1 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} . . . (3)\]

\[\]

\[Adding (2) and (3), we get\]

\[ A^2 + B^2 = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]

\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (4)\]

Comparing (1) and (4), we get

(A + B)2 = A2 + B2

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.3 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.3 | Q 51 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the indicated products:

`[[1     -2],[2     3]][[1         2        3],[-3    2      -1]]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


If


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If 

 


If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]


`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices
A and B such that AB ≠ BA


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 

If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals


If  \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\]  is such that A2 = I, then 

 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


If  \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If A and B are square matrices of the same order, then [k (A – B)]′ = ______.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


If A, B and C are square matrices of same order, then AB = AC always implies that B = C


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×