Advertisements
Advertisements
Question
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
Solution
Given:\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}, B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] and x2 = −1
To show: (A + B)2 = A2 + B2
LHS:
\[A + B = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix} + \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + 0 & - x + 1 \\ x + 1 & 0 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]
\[ \left( A + B \right)^2 = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + \left( 1 - x \right)\left( 1 + x \right) & 0 + 0 \\ 0 + 0 & \left( x + 1 \right)\left( 1 - x \right) + 0\end{bmatrix}\]
\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (1)\]
R. H. S
\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]
\[ A^2 = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 - x^2 & 0 + 0 \\ 0 + 0 & - x^2 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} . . . (2)\]
\[\]
\[ B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]
\[ B^2 = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 + 1 & 0 + 0 \\ 0 + 0 & 1 + 0\end{bmatrix}\]
\[ = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} . . . (3)\]
\[\]
\[Adding (2) and (3), we get\]
\[ A^2 + B^2 = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (4)\]
Comparing (1) and (4), we get
(A + B)2 = A2 + B2
APPEARS IN
RELATED QUESTIONS
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
If
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
If
If f (x) = x3 + 4x2 − x, find f (A), where\[A = \begin{bmatrix}0 & 1 & 2 \\ 2 & - 3 & 0 \\ 1 & - 1 & 0\end{bmatrix}\]
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Give examples of matrices
A and B such that AB ≠ BA
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
write AB.
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3