मराठी

If `A=[[0,-x],[X,0]],[[0,1],[1,0]]` and `X^2=-1,` Then Show that `(A+B)^2=A^2+B^2` - Mathematics

Advertisements
Advertisements

प्रश्न

If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`

बेरीज

उत्तर

Given:\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}, B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] and x2 = −1

To show: (A + B)2 = A2 + B2

LHS:

\[A + B = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix} + \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + 0 & - x + 1 \\ x + 1 & 0 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]

\[ \left( A + B \right)^2 = \begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\begin{bmatrix}0 & - x + 1 \\ x + 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + \left( 1 - x \right)\left( 1 + x \right) & 0 + 0 \\ 0 + 0 & \left( x + 1 \right)\left( 1 - x \right) + 0\end{bmatrix}\]

\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (1)\]

R. H. S

\[A = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]

\[ A^2 = \begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\begin{bmatrix}0 & - x \\ x & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 - x^2 & 0 + 0 \\ 0 + 0 & - x^2 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} . . . (2)\]

\[\]

\[ B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ B^2 = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 + 1 & 0 + 0 \\ 0 + 0 & 1 + 0\end{bmatrix}\]

\[ = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} . . . (3)\]

\[\]

\[Adding (2) and (3), we get\]

\[ A^2 + B^2 = \begin{bmatrix}- x^2 & 0 \\ 0 & - x^2\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]

\[ = \begin{bmatrix}1 - x^2 & 0 \\ 0 & 1 - x^2\end{bmatrix} . . . (4)\]

Comparing (1) and (4), we get

(A + B)2 = A2 + B2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 51 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


Evaluate the following:

`([[1              3],[-1    -4]]+[[3        -2],[-1         1]])[[1         3           5],[2            4               6]]`


If A = `[[ cos 2θ     sin 2θ],[ -sin 2θ    cos 2θ]]`, find A2.


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]   , Show that A2 = A.


If f (x) = x2 − 2x, find f (A), where A=


`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


If `A=[[0,0],[4,0]]` find `A^16`


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that

\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α}  & \sqrt{2}\text{sin n  α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin  n  α} \end{bmatrix}\] for all n ∈ N.

 


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT


 If \[A = \begin{bmatrix}4 & 3 \\ 1 & 2\end{bmatrix} and B = \binom{ - 4}{ 3}\] 

write AB.

 

If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


For any square matrix write whether AAT is symmetric or skew-symmetric.


For a 2 × 2 matrix A = [aij] whose elements are given by 

\[a_{ij} = \frac{i}{j}\] , write the value of a12.
 

Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


If A is a matrix of order m × n and B is a matrix such that ABT and BTA are both defined, then the order of matrix B is 

Disclaimer: option (a) and (d) both are the same.

 

If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If  \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then


If A = `[(2, -1, 3),(-4, 5, 1)]` and B = `[(2, 3),(4, -2),(1, 5)]`, then ______.


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


If matrix AB = O, then A = O or B = O or both A and B are null matrices.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×