मराठी

For the Following Matrices Verify the Distributivity of Matrix Multiplication Over Matrix Addition I.E. A (B + C) = Ab + Ac: `A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]` - Mathematics

Advertisements
Advertisements

प्रश्न

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`

बेरीज

उत्तर

LaTeX

\[\left( ii \right) \]
\[A\left( B + C \right) = AB + AC\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\left( \begin{bmatrix}0 & 1 \\ 1 & 1\end{bmatrix} + \begin{bmatrix}1 & - 1 \\ 0 & 1\end{bmatrix} \right) = \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}0 & 1 \\ 1 & 1\end{bmatrix} + \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}1 & - 1 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}0 + 1 & 1 - 1 \\ 1 + 0 & 1 + 1\end{bmatrix} = \begin{bmatrix}0 - 1 & 2 - 1 \\ 0 + 1 & 1 + 1 \\ 0 + 2 & - 1 + 2\end{bmatrix} + \begin{bmatrix}2 - 0 & - 2 - 1 \\ 1 + 0 & - 1 + 1 \\ - 1 + 0 & 1 + 2\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 & - 1 \\ 1 & 1 \\ - 1 & 2\end{bmatrix}\begin{bmatrix}1 & 0 \\ 1 & 2\end{bmatrix} = \begin{bmatrix}- 1 & 1 \\ 1 & 2 \\ 2 & 1\end{bmatrix} + \begin{bmatrix}2 & - 3 \\ 1 & 0 \\ - 1 & 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}2 - 1 & 0 - 2 \\ 1 + 1 & 0 + 2 \\ - 1 + 2 & 0 + 4\end{bmatrix} = \begin{bmatrix}- 1 + 2 & 1 - 3 \\ 1 + 1 & 2 + 0 \\ 2 - 1 & 1 + 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - 2 \\ 2 & 2 \\ 1 & 4\end{bmatrix} = \begin{bmatrix}1 & - 2 \\ 2 & 2 \\ 1 & 4\end{bmatrix}\]
\[ \therefore LHS = RHS\]
Hence proved .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 17.2 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Compute the indicated product:

`[(a,b),(-b,a)][(a,-b),(b,a)]`


Compute the indicated product.

`[(1),(2),(3)] [2,3,4]`


Compute the indicated products

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.


Compute the products AB and BA whichever exists in each of the following cases:

A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`

 


If A =  `[[4       2],[-1        1]]` 

, prove that (A − 2I) (A − 3I) = O

 

If A =  `[[1    1],[0    1]]`  show that A2 = `[[1       2],[0          1]]` and A3 = `[[1        3],[0       1]]`


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\]show that A2 − 5A + 7I = O use this to find A4.


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(A − B)T = AT − BT


If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.

 

 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


If  \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.

 

 


If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.


For any square matrix write whether AAT is symmetric or skew-symmetric.


If \[A = \begin{bmatrix}\cos \alpha & - \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\] is identity matrix, then write the value of α.


For a 2 × 2 matrix A = [aij] whose elements are given by 

\[a_{ij} = \frac{i}{j}\] , write the value of a12.
 

If \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - 1\end{bmatrix}\] , then A2 is equal to ___________ .


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If AB are square matrices of order 3, A is non-singular and AB = O, then B is a 


If  \[A = \begin{bmatrix}1 & a \\ 0 & 1\end{bmatrix}\]then An (where n ∈ N) equals 

 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C


Prove by Mathematical Induction that (A′)n = (An)′, where n ∈ N for any square matrix A.


If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×