मराठी

Let A = [12-13], B = [4015], C = [201-2] and a = 4, b = –2. Show that: A(BC) = (AB)C - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` and a = 4, b = –2. Show that: A(BC) = (AB)C

बेरीज

उत्तर

We have,

A = `[(1, 2),(-1, 3)]`

B = `[(4, 0),(1, 5)]`

C = `[(2, 0),(1, -2)]`

And a = 4, b = –2

(BC) = `[(4, 0),(1, 5)] [(2, 0),(1, -2)]`

= `[(8, 0),(7, -10)]`

And A(BC) = `[(1, 2),(-1, 3)] [(8, 0),(7, -10)]`

= `[(8 + 14,0 - 20),(-8 ++21, 0 - 30)]`

= `[(22, -20),(13,-30)]`

Also, AB = `[(1, 2),(-1, 3)] * [(4, 0),(1, 5)]`

= `[(4 + 2, 0 + 10),(-4 + 3, 0 +15)]`

= `[(6, 10),(-1, 15)]`

∴ (AB)C = `[(6, 10),(-1, 15)] [(2, 0),(1, -2)]`

= `[(22, -20),(13, -30)]`

= A(BC)

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 32.(b) | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Show that AB ≠ BA in each of the following cases:

`A=[[1       3         0],[1        1          0],[4         1         0]]`And    B=`[[0      1          0],[1        0        0],[0           5          1]]`


Let A =`[[-1            1               -1],[3         -3           3],[5           5             5]]`and B =`[[0                4                  3],[1              -3              -3],[-1               4                 4]]`

, compute A2 − B2.

 

If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show  that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.


If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as

      Cost per contact

`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`

The number of contacts of each type made in two cities X and Y is given in matrix B as

       Telephone   House call    Letter

`B= [[    1000, 500,      5000],[3000,1000,     10000                ]]` 

Find the total amount spent by the group in the two cities X and Y.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of
(i) Rs 1800 


A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (A + B)T = AT BT


 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If \[\begin{bmatrix}1 & 0 \\ y & 5\end{bmatrix} + 2\begin{bmatrix}x & 0 \\ 1 & - 2\end{bmatrix}\]  = I, where I is 2 × 2 unit matrix. Find x and y.

 


If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 

If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


If  \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


The number of possible matrices of order 3 × 3 with each entry 2 or 0 is 


If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.


A square matrix where every element is unity is called an identity matrix.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?

A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×