मराठी

f [ cos 2 π 7 − sin 2 π 7 sin 2 π 7 cos 2 π 7 ] k = [ 1 0 0 1 ] then the least positive integral value of k is - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}^k = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\] then the least positive integral value of k is _____________.

पर्याय

  • 3

  • 4

  • 6

  • 7

MCQ

उत्तर

 7

\[Here, \] 
\[A = \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]

\[ \Rightarrow A^2 = A \times A\]

\[ \Rightarrow A^2 = \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]

\[ \Rightarrow A^2 = \begin{bmatrix}\cos^2 \frac{2\pi}{7} - \sin^2 \frac{2\pi}{7} & \left( - 2\cos\frac{2\pi}{7}\sin\frac{2\pi}{7} \right) \\ 2\cos\frac{2\pi}{7}\sin\frac{2\pi}{7} & \cos^2 \frac{2\pi}{7} - \sin^2 \frac{2\pi}{7}\end{bmatrix}\]

`⇒ A^2 =[[cos  (4π   )/7   -sin (4π  )/7   ] , [ sin (4π  )/7      cos (4π)/7] ]`     `[[∵   cos^2 θ - sin^2 θ  = cos 2 θ ],[ 2 sin θ  cos θ  = sin θ ]]`

\[ \Rightarrow A^3 = A^2 \times A\]

\[ \Rightarrow A^3 = \begin{bmatrix}\cos\frac{4\pi}{7} & - \sin\frac{4\pi}{7} \\ \sin\frac{4\pi}{7} & \cos\frac{4\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^3 = \begin{bmatrix}\left( \cos \frac{4\pi}{7}\cos\frac{2\pi}{7} - \sin\frac{4\pi}{7}\sin\frac{2\pi}{7} \right) & \left( - \cos\frac{4\pi}{7}\sin\frac{2\pi}{7} - \sin\frac{4\pi}{7}\cos\frac{2\pi}{7} \right) \\ \left( \sin\frac{4\pi}{7}\cos\frac{2\pi}{7} + \cos\frac{4\pi}{7}\sin\frac{2\pi}{7} \right) & \left( - \sin\frac{2\pi}{7}\sin\frac{4\pi}{7} + \cos\frac{4\pi}{7}\cos\frac{2\pi}{7} \right)\end{bmatrix}\]
  `⇒ A^2 =[[cos  (6π   )/7   -sin (6π  )/7   ] , [ sin (6π  )/7      cos (6π)/7] ]`    `[[∵   cos(A+B) = cos A cos B - sin A sin B ],[ sin (A+B) =sin A  cos B   + cos A sin  B ]]`

Now we check if the pattern is same for k = 6.
Here,

\[A^6 = A^3 . A^3 \]
\[ \Rightarrow A^6 = \begin{bmatrix}\cos \frac{6\pi}{7} & - \sin\frac{6\pi}{7} \\ \sin\frac{6\pi}{7} & \cos\frac{6\pi}{7}\end{bmatrix} \begin{bmatrix}\cos \frac{6\pi}{7} & - \sin\frac{6\pi}{7} \\ \sin\frac{6\pi}{7} & \cos\frac{6\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^6 = \begin{bmatrix}\cos \frac{12\pi}{7} & - \sin\frac{12\pi}{7} \\ \sin \frac{12\pi}{7} & \cos \frac{12\pi}{7}\end{bmatrix}\]

Now, we check if the pattern is same for k = 7.
Here,

\[A^7 = A^6 \times A\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos \frac{12\pi}{7} & - \sin\frac{12\pi}{7} \\ \sin \frac{12\pi}{7} & \cos \frac{12\pi}{7}\end{bmatrix} \begin{bmatrix}\cos\frac{2\pi}{7} & - \sin\frac{2\pi}{7} \\ \sin\frac{2\pi}{7} & \cos\frac{2\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos \frac{14\pi}{7} & - \sin\frac{14\pi}{7} \\ \sin \frac{14\pi}{7} & \cos \frac{14\pi}{7}\end{bmatrix}\]
\[ \Rightarrow A^7 = \begin{bmatrix}\cos 2\pi & - \sin2\pi \\ \sin 2\pi & \cos 2\pi\end{bmatrix} \left[ \because \frac{14\pi}{7} = 2\pi \right]\]
\[ = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]

So, the least positive integral value of k is 7.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.7 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.7 | Q 6 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\],  then prove that A2 − A + 2I = O.


\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]


 If `[[2     3],[5      7]] [[1      -3],[-2       4]]-[[-4      6],[-9        x]]` find x.


If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


Solve the matrix equations:

`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0


Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`


If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .


Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT

 

 If  \[A = \begin{bmatrix}2 & 1 & 4 \\ 4 & 1 & 5\end{bmatrix}and B = \begin{bmatrix}3 & - 1 \\ 2 & 2 \\ 1 & 3\end{bmatrix}\] . Write the orders of AB and BA.
 

 


If  \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


What is the total number of 2 × 2 matrices with each entry 0 or 1?


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ? 


If  \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


A square matrix where every element is unity is called an identity matrix.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×