Advertisements
Advertisements
प्रश्न
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.
उत्तर
It is given that Rs. 30,000 must be invested into two types of bonds with 5% and 7% interest rates.
Let Rs. x be invested in bonds of the first type. Thus, Rs. (30,000 − x) will be invested in the other type.
Hence, the amount invested in each type of bond can be represented in matrix form, with each column corresponding to a different type of bond as follows:
X = [x 30,000 − x]
annual interest obtained is Rs. 2000.
Hence, the interest obtained after one year can be expressed in matrix representation as follows:
`[x 30000 - x] [(5/100),(7/100)]`= [2000]
`=> [x xx 5/100 + (30000 - x) xx 7/100] = [2000]`
`=> (5x)/100 + (7(30000 - x))/100`
= 2000
⇒ 5x + 210000 − 7x
= 200000
⇒ −2x = − 10000
⇒ `x = 10000/-2`
∴ x = 5000
Amount invested in the first bond = x = Rs. 5000
⇒ Amount invested in the second bond
= Rs. (30000 − x)
= Rs. (30000 − 5000)
= Rs. 25000
∴ The trust has to invest Rs. 5000 in the first bond and Rs. 25000 in the second bond in order to obtain an annual interest rate of Rs. 2000.
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find AB
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
If A = `[[1 0],[0 1]]`,B`[[1 0],[0 -1]]`
and C= `[[0 1],[1 0]]`
, then show that A2 = B2 = C2 = I2.
If A =`[[2 -3 -5],[-1 4 5],[1 -3 -4]]` and B =`[[2 -2 -4],[-1 3 4],[1 2 -3]]`
, show that AB = A and BA = B.
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
Solve the matrix equations:
`[[],[x-5-1],[]][[1,0,2],[0,2,1],[2,0,3]] [[x],[4],[1]]=0`
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
If `A=[[0,0],[4,0]]` find `A^16`
If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`
If\[A = \begin{bmatrix}a & b \\ 0 & 1\end{bmatrix}\], prove that\[A^n = \begin{bmatrix}a^n & b( a^n - 1)/a - 1 \\ 0 & 1\end{bmatrix}\] for every positive integer n .
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
If \[A = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\] write AAT.
If A = [aij] is a 2 × 2 matrix such that aij = i + 2j, write A.
Write matrix A satisfying ` A+[[2 3],[-1 4]] =[[3 6],[- 3 8]]`.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
Write a 2 × 2 matrix which is both symmetric and skew-symmetric.
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find 2X – 3Y
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
If A `= [(1,-2,1),(2,1,3)]` and B `= [(2,1),(3,2),(1,1)],` then (AB)T is equal