मराठी

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` and `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and Verify That (A + B)T = At + Bt - Mathematics

Advertisements
Advertisements

प्रश्न

Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that   (A + B)T = AT + BT

बेरीज

उत्तर

\[Given: A = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{bmatrix} \text{and B }= \begin{bmatrix}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix}\] 

`A^T = [[1    2    1],[-1    1    2 ],[0     3   1]]`  and `B^T = [[1     2      0],[2      1     1 ],[3    3     1]]` 


\[\left( i \right) \] 

\[A + B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 1 & 3 \\ 1 & 2 & 1\end{bmatrix} + \begin{bmatrix}1 & 2 & 3 \\ 2 & 1 & 3 \\ 0 & 1 & 1\end{bmatrix} \] 

\[ \Rightarrow A + B = \begin{bmatrix}1 + 1 & - 1 + 2 & 0 + 3 \\ 2 + 2 & 1 + 1 & 3 + 3 \\ 1 + 0 & 2 + 1 & 1 + 1\end{bmatrix}\] 

\[ \Rightarrow A + B = \begin{bmatrix}2 & 1 & 3 \\ 4 & 2 & 6 \\ 1 & 3 & 2\end{bmatrix}\] 

\[ \Rightarrow \left( A + B \right)^T = \begin{bmatrix}2 & 4 & 1 \\ 1 & 2 & 3 \\ 3 & 6 & 2\end{bmatrix} . . . \left( 1 \right)\] 
\[Now, \] 

\[ A^T + B^T = \begin{bmatrix}1 & 2 & 1 \\ - 1 & 1 & 2 \\ 0 & 3 & 1\end{bmatrix} + \begin{bmatrix}1 & 2 & 0 \\ 2 & 1 & 1 \\ 3 & 3 & 1\end{bmatrix}\] \[ \Rightarrow A^T + B^T = \begin{bmatrix}1 + 1 & 2 + 2 & 1 + 0 \\ - 1 + 2 & 1 + 1 & 2 + 1 \\ 0 + 3 & 3 + 3 & 1 + 1\end{bmatrix}\] 

\[ \Rightarrow A^T + B^T = \begin{bmatrix}2 & 4 & 1 \\ 1 & 2 & 3 \\ 3 & 6 & 2\end{bmatrix} . . . \left( 2 \right)\] 
\[ \Rightarrow \left( A + B \right)^T = A^T + B^T \left[ \text{From eqs} . \left( 1 \right) and \left( 2 \right) \right]\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.4 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.4 | Q 3.1 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Compute the products AB and BA whichever exists in each of the following cases:

A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`

 


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\]  is  root of the equation A2 − 12A − I = O


If 

 


Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


Solve the matrix equations:

[2x 3] `[[1       2],[-3      0]] , [[x],[8]]=0`


Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.


`A=[[3,-5],[-4,2]]` then find A2 − 5A − 14I. Hence, obtain A3


 If `P(x)=[[cos x,sin x],[-sin x,cos x]],` then show that `P(x),P(y)=P(x+y)=P(y)P(x).`


If `P=[[x,0,0],[0,y,0],[0,0,z]]` and `Q=[[a,0,0],[0,b,0],[0,0,c]]` prove that `PQ=[[xa,0,0],[0,yb,0],[0,0,zc]]=QP`


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices
A and B such that AB ≠ BA


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


If A and B are square matrices of the same order, explain, why in general

 (A + B) (A − B) ≠ A2 − B2


To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:

(i) ₹50       (ii) ₹20       (iii) ₹40

The number of attempts made in three villages XY and Z are given below:

          (i)               (ii)              (iii)
X      400              300             100
Y      300              250               75
Z      500              400             150

Find the total cost incurred by the organisation for three villages separately, using matrices.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

 If \[A = \begin{bmatrix}2 & 4 & - 1 \\ - 1 & 0 & 2\end{bmatrix}, B = \begin{bmatrix}3 & 4 \\ - 1 & 2 \\ 2 & 1\end{bmatrix}\],find `(AB)^T`

 


 For two matrices A and B,   \[A = \begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}, B = \begin{bmatrix}1 & - 1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}\](AB)T = BT AT.

 


For the matrices A and B, verify that (AB)T = BT AT, where
\[A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]

If  \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\]  , find AAT

 

If  \[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\begin{bmatrix}3 & 1 \\ 2 & 5\end{bmatrix} = \begin{bmatrix}7 & 11 \\ k & 23\end{bmatrix}\] ,then write the value of k.


What is the total number of 2 × 2 matrices with each entry 0 or 1?


If `[2     1       3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.


If A and B are two matrices such n  that AB = B and BA = A , `A^2 + B^2` is equal to


If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2,   values of a and b are


If A is a square matrix such that A2 = A, then (I + A)3 − 7A is equal to


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×