Advertisements
Advertisements
प्रश्न
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
उत्तर
Let
\[P\left( n \right)\] be the statement given by
]\[P\left( n \right) : A^{n + 1} = B^n \left( B + \left( n + 1 \right)C \right)\]
For n = 1, we have
\[P\left( 1 \right) : A^2 = B\left( B + 2C \right)\]
\[\]
\[Here, \]
\[LHS = A^2 \]
\[ = \left( B + C \right)\left( B + C \right)\]
\[ = B\left( B + C \right) + C\left( B + C \right)\]
\[ = B^2 + BC + CB + C^2 \]
\[ = B^2 + 2BC \left[ \because BC = \text{CB and} C^2 = O \right]\]
\[ = B\left( B + 2C \right) = RHS\]
Hence, the statement is true for n = 1.
If the statement is true for n = k, then
\[P\left( k \right) : A^{k + 1} = B^k \left( B + \left( k + 1 \right)C \right)\] ...(1)
For
\[P\left( k + 1 \right)\] to be true, we must have
\[P\left( k + 1 \right) : A^{k + 2} = B^{k + 1} \left( B + \left( k + 2 \right)C \right)\]
Now,
\[\]\[A^{k + 2} = A^{k + 1} A\]
\[ = \left[ B^k \left( B + \left( k + 1 \right)C \right) \right]\left( B + C \right) \left[\text{From eq} . \left( 1 \right) \right]\]
\[ = \left[ B^{k + 1} + \left( k + 1 \right) B^k C \right]\left( B + C \right)\]
\[ = B^{k + 1} \left( B + C \right) + \left( k + 1 \right) B^k C\left( B + C \right)\]
\[ = B^{k + 2} + B^{k + 1} C + \left( k + 1 \right) B^k CB + \left( k + 1 \right) B^k C^2 \]
\[ = B^{k + 2} + B^{k + 1} C + \left( k + 1 \right) B^k BC \left[ \because BC = \text{CB and} C^2 = 0 \right]\]
\[ = B^{k + 2} + B^{k + 1} C + \left( k + 1 \right) B^{k + 1} C\]
\[ = B^{k + 2} + \left( k + 2 \right) B^{k + 1} C\]
\[ = B^{k + 1} \left[ B + \left( k + 2 \right)C \right]\]
So the statement is true for n = k+1.
Hence, by the principle of mathematical induction,
\[n \in N\]
APPEARS IN
संबंधित प्रश्न
Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`
Find BA
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Evaluate the following:
`([[1 3],[-1 -4]]+[[3 -2],[-1 1]])[[1 3 5],[2 4 6]]`
Evaluate the following:
`[[1 -1],[0 2],[2 3]]` `([[1 0 2],[2 0 1]]-[[0 1 2],[1 0 2]])`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:
`A=[[2 -1],[1 1],[-1 2]]` `B=[[0 1],[1 1]]` C=`[[1 -1],[0 1]]`
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
Find the value of x for which the matrix product`[[2 0 7],[0 1 0],[1 -2 1]]` `[[-x 14x 7x],[0 1 0],[x -4x -2x]]`equal an identity matrix.
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ C, A ≠ O.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A − B)T = AT − BT
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (A + B)T = AT + BT
If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.
If `A=[[i,0],[0,i ]]` , n ∈ N, then A4n equals
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
If matrix A = [aij]2×2, where aij `{:(= 1 "if i" ≠ "j"),(= 0 "if i" = "j"):}` then A2 is equal to ______.
A matrix which is not a square matrix is called a ______ matrix.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
If matrix AB = O, then A = O or B = O or both A and B are null matrices.
If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3