मराठी

If a = Diag (A, B, C), Show that an = Diag (An, Bn, Cn) for All Positive Integer N. - Mathematics

Advertisements
Advertisements

प्रश्न

If A = diag (abc), show that An = diag (anbncn) for all positive integer n.

 
बेरीज

उत्तर

We shall prove the result by the principle of mathematical induction on n.

Step 1: If n = 1, by definition of integral power of a matrix, we have

\[A^1 = \begin{bmatrix}a^1 & 0 & 0 \\ 0 & b^1 & 0 \\ 0 & 0 & c^1\end{bmatrix} = \begin{bmatrix}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{bmatrix} = A\]

So, the result is true for n = 1.

Step 2: Let the result be true for n = m. Then,

\[A^m = \begin{bmatrix}a^m & 0 & 0 \\ 0 & b^m & 0 \\ 0 & 0 & c^m\end{bmatrix}\]         ...(1)

Now, we shall check if the result is true for

\[n = m + 1\]

Here,

\[A^{m + 1} = \begin{bmatrix}a^{m + 1} & 0 & 0 \\ 0 & b^{m + 1} & 0 \\ 0 & 0 & c^{m + 1}\end{bmatrix}\]

By definition of integral power of matrix, we have

\[A^{m + 1} = A^m A\]

\[ \Rightarrow A^{m + 1} = \begin{bmatrix}a^m & 0 & 0 \\ 0 & b^m & 0 \\ 0 & 0 & c^m\end{bmatrix}\begin{bmatrix}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{bmatrix} \left[ \text{From eq} . \left( 1 \right) \right]\]

\[ \Rightarrow A^{m + 1} = \begin{bmatrix}a a^m + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + b b^m + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + c c^m\end{bmatrix}\]

\[ \Rightarrow A^{m + 1} = \begin{bmatrix}a^{m + 1} & 0 & 0 \\ 0 & b^{m + 1} & 0 \\ 0 & 0 & c^{m + 1}\end{bmatrix}\]

This shows that when the result is true for n = m, it is also true for

\[n = m + 1\]

Hence, by the principle of mathematical induction, the result is valid for any positive integer n.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 62 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.


If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.


Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`


Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`


If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x


If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?


If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`

then find (i) a22 + b21 (ii) a11 b11 + a22 b22

 

 


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij i + j


Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:

ajj = i − j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij = j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

`a_(ij)=1/2= -3i + j `


Construct a 4 × 3 matrix whose elements are

`a_(ij)=2_i+ i/j`


Construct a 4 × 3 matrix whose elements are

`a_(ij)= (i-j)/(i+j )`


Given an example of

 a triangular matrix


If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos  nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n  ∈ N.`


A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.

 

If A and B are symmetric matrices, then write the condition for which AB is also symmetric.


If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.


If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.


If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.


Matrix A = \[\begin{bmatrix}0 & 2b & - 2 \\ 3 & 1 & 3 \\ 3a & 3 & - 1\end{bmatrix}\]  is given to be symmetric, find values of a and b.

 


`If A = ([3   5] , [7     9])` is written as A = P + Q, where as A = p + Q , Where  P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P. 


If the matrix AB is zero, then


If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\]  and A = AT, then


If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type 


If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\]  then AT + A = I2, if


If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.


Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and  "C" = [(2, 0, -2),(7, 1, 6)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×