मराठी

If `A=[[Cos θ, I Sinθ],[I Sinθ,Cosθ]]` Then Prove by Pricople of Mathematical Induction that `A^N=[[Cos Nθ,I Sinθ],[I Sin Nθ,Cos Nθ]]` for All `N ∈ N.` - Mathematics

Advertisements
Advertisements

प्रश्न

If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos  nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n  ∈ N.`

बेरीज

उत्तर

We shall prove the result by the principle of mathematical induction on n.

Step 1: If = 1, by definition of integral power of a matrix, we have

\[A^1 = \begin{bmatrix}\cos 1\theta & i \sin1\theta \\ i \sin 1\theta & \cos 1\theta\end{bmatrix} = \begin{bmatrix}\cos\theta & i \sin\theta \\ i \sin\theta & \cos\theta\end{bmatrix} = A\]

Thus, the result is true for n=1.

Step 2: Let the result be true for n = m. Then,

`A^m = [[ cos mθ        i sin mθ ],[i sin mθ     cos mθ ]]`

Now we shall show that the result is true for

`n=m+1`

Here

\[A^{m + 1} = \begin{bmatrix}\ cos \left( m + 1 \right)\theta & i \ sin\left( m + 1 \right)\theta \\ i  \ sin \left( m + 1 \right)\theta & \ cos \left( m + 1 \right)\theta\end{bmatrix}\]            ...(1)

By definition of integral power of matrix, we have

\[A^{m + 1} = A^m A\]

`⇒ A^m+1 = [[ cos m θ    i sin m θ],[ i sin m θ     cos m θ  ]]` `[[cos θ   i sin θ  ],[ i sin θ   cos θ  ]]` [From  eq (1) ]

`⇒ A^m+1 = [[ cos m θ  .cos θ+  i sin m θ.i sin θ     cos m θ  . i sin θ  +  i sin m θ . cos θ ],[  i sin m  θ  .  cos θ  + cos m  θ . i sin   θ    i sin m θ . i sin   θ  + cos m  θ .cos  θ  ]]`

`⇒ A^m+1 = [[ cos m θ  .cos θ-  sin m θ. sin θ    i  ( cos m θ  .  sin θ  +  sin m θ . cos θ )],[  i (sin m  θ  .  cos θ  + cos m  θ . i sin   θ  ) -  sin m θ . i sin   θ  + cos m  θ .cos  θ  ]]`

`⇒ A^m+1 = [[ cos m θ  .cos θ-  sin m θ. sin θ    i  ( cos m θ  .  sin θ  +  sin m θ . cos θ )],[  i (sin m  θ  .  cos θ  + cos m  θ .  sin   θ  )      cos m  θ .cos θ  -  sin m θ . sin θ  ]]`

`⇒ A^m+1 =[[ cos (m θ + θ )   i sin (m θ + θ ) ], [ i sin (m θ + θ )     cos (m θ + θ )]]`

`⇒ A^m+1 =[[ cos (m  + 1)θ  i sin (m  +1) θ ], [ i sin (m  + 1 )θ    cos (m  + 1)θ ]]`

 

This shows that when the result is true for n = m, it is true for

`n=m+1`

Hence, by the principle of mathematical induction, the result is valid for all n

\[\in N\]

Disclaimer: n is missing before

\[\theta\] in a12 in An.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 58 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.


Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`


If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x


If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?


Construct a 2 × 2 matrix whose elements aij are given by:

`aij=(i-j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)= (2i +j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|-3i +j|/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=e^(2ix) sin (xj)`


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij i + j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij = j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

`a_(ij)=1/2= -3i + j `


Construct a 4 × 3 matrix whose elements are

`a_(ij)=2_i+ i/j`


Construct a 4 × 3 matrix whose elements are

 aij = 


The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.


If A = diag (abc), show that An = diag (anbncn) for all positive integer n.

 

If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.

 

If A and B are symmetric matrices, then write the condition for which AB is also symmetric.


If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.


If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.


Matrix A = \[\begin{bmatrix}0 & 2b & - 2 \\ 3 & 1 & 3 \\ 3a & 3 & - 1\end{bmatrix}\]  is given to be symmetric, find values of a and b.

 


`If A = ([3   5] , [7     9])` is written as A = P + Q, where as A = p + Q , Where  P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P. 


Let and be matrices of orders 3 x 2 and 2 x 

4 respectively. Write the order of matrix AB. 


If the matrix AB is zero, then


If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\]  and A = AT, then


If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\]  then AT + A = I2, if


Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and  "C" = [(2, 0, -2),(7, 1, 6)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×