मराठी

Construct a 4 × 3 Matrix Whose Elements Are `A_(Ij)=2_I+ I/J` - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a 4 × 3 matrix whose elements are

`a_(ij)=2_i+ i/j`

बेरीज

उत्तर

`a_(ij)=2_i+ i/j`

Here, 

`a_11=2(1)+1/1= (2+1)/1=3/1=3, `

`a_12 = 2(1)+ 2/1=(4+1)/2=5/2,`

`a_13=2(1)+1/3=(6+1)/3=7/3`

`a_21=2(2)+2/1=(4+2)/1=6/1=6`

`a_22=2(2)+2/2=(8+2)/2=10/2=5,`

`a_23=2(2)+2/3=(12+2)/3=14/3`

`a_31=2(3)+3/1=(6+3)/1=9/1=9`

`a_32=2(3)+3/2=(12+3)/2=15/2`

`a_33=2(3)+3/3=(18+3)/3=21/3=7`

`a_41=2(4)+4/1=(8+4)/1=12/1=12`

`a_42=2(4)+4/2= (16+4)/2=20/2=10 and `

`a_43=2(4)+ 4/3=(24+4)/3=28/3`

So, the required matrix is`[[3    5/2    7/13],[6     5   14/3],[9   15/2  7],[12    10     28/3]]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.1 | Q 7.1 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.


If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.


Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`


Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`


Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2


Construct a 2 × 2  matrix whose elements `a_(ij)`

are given by: `(i+j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`aij=(i-j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=(i-2_j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)= (2i +j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|-3i +j|/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=e^(2ix) sin (xj)`


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij i + j


Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:

ajj = i − j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 4 × 3 matrix whose elements are

`a_(ij)= (i-j)/(i+j )`


If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos  nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n  ∈ N.`


If A = diag (abc), show that An = diag (anbncn) for all positive integer n.

 

A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.

 

If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.


If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.


If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.


If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\]  , find x.


Matrix A = \[\begin{bmatrix}0 & 2b & - 2 \\ 3 & 1 & 3 \\ 3a & 3 & - 1\end{bmatrix}\]  is given to be symmetric, find values of a and b.

 


`If A = ([3   5] , [7     9])` is written as A = P + Q, where as A = p + Q , Where  P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P. 


Let and be matrices of orders 3 x 2 and 2 x 

4 respectively. Write the order of matrix AB. 


If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\]  and A = AT, then


If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\]  then AT + A = I2, if


If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×