Advertisements
Advertisements
प्रश्न
Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.
उत्तर
Given that of aij = e2ix sin jx.
Substitute i = 1 and j = 2
Thus `a_12=e^(2xx1xxx) sin(2xx x)=e^(2x)sin(2x)`
APPEARS IN
संबंधित प्रश्न
If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.
Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`
If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
Construct a 2 × 2 matrix whose elements `a_(ij)`
are given by: `(i+j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|2_i - 3_i|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|-3i +j|/2`
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = j
Construct a 4 × 3 matrix whose elements are
`a_(ij)=2_i+ i/j`
Construct a 4 × 3 matrix whose elements are
`a_(ij)= (i-j)/(i+j )`
Construct a 4 × 3 matrix whose elements are
aij = i
Given an example of
a triangular matrix
If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n ∈ N.`
If A = diag (a, b, c), show that An = diag (an, bn, cn) for all positive integer n.
A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
If A and B are symmetric matrices, then write the condition for which AB is also symmetric.
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.
If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\] , find x.
`If A = ([3 5] , [7 9])` is written as A = P + Q, where as A = p + Q , Where P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
If the matrix AB is zero, then
If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\] and A = AT, then
If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\] then AT + A = I2, if
Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and "C" = [(2, 0, -2),(7, 1, 6)]`.