Advertisements
Advertisements
प्रश्न
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
उत्तर
Stock of various types of books in the store is given by
Physics Chemistry Mathematics
\[X = \begin{bmatrix}120 & 96 & 60\end{bmatrix}\]
Selling price of various types of books in the store is given by
\[Y = \begin{bmatrix}8 . 30 \\ 3 . 45 \\ 4 . 50\end{bmatrix}\begin{array} \\Physics \\ Chemistry \\ Mathematics\end{array}\]
\[\]
Total amount received by the store from selling all the items is given by
\[XY = \begin{bmatrix}120 & 96 & 60\end{bmatrix}\begin{bmatrix}8 . 30 \\ 3 . 45 \\ 4 . 50\end{bmatrix}\]
\[ = \begin{bmatrix}\left( 120 \right)\left( 8 . 30 \right) + \left( 96 \right)\left( 3 . 45 \right) + \left( 60 \right)\left( 4 . 50 \right)\end{bmatrix}\]
\[ = \begin{bmatrix}996 + 331 . 20 + 270\end{bmatrix}\]
\[ = \begin{bmatrix}1597 . 20\end{bmatrix}\]
Required amount = Rs 1597.20
APPEARS IN
संबंधित प्रश्न
Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.
Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`
If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x
If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2
If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`
then find (i) a22 + b21 (ii) a11 b11 + a22 b22
Construct a 2 × 2 matrix whose elements `a_(ij)`
are given by: `(i+j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`aij=(i-j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=(i-2_j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|2_i - 3_i|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=e^(2ix) sin (xj)`
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = i + j
Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:
ajj = i − j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = j
Construct a 4 × 3 matrix whose elements are
`a_(ij)=2_i+ i/j`
Construct a 4 × 3 matrix whose elements are
`a_(ij)= (i-j)/(i+j )`
Given an example of
a triangular matrix
The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.
If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n ∈ N.`
If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.
If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.
If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.
Matrix A = \[\begin{bmatrix}0 & 2b & - 2 \\ 3 & 1 & 3 \\ 3a & 3 & - 1\end{bmatrix}\] is given to be symmetric, find values of a and b.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
If the matrix AB is zero, then
If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type
If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.
Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and "C" = [(2, 0, -2),(7, 1, 6)]`.