Advertisements
Advertisements
प्रश्न
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
उत्तर
Stock of various types of books in the store is given by
Physics Chemistry Mathematics
\[X = \begin{bmatrix}120 & 96 & 60\end{bmatrix}\]
Selling price of various types of books in the store is given by
\[Y = \begin{bmatrix}8 . 30 \\ 3 . 45 \\ 4 . 50\end{bmatrix}\begin{array} \\Physics \\ Chemistry \\ Mathematics\end{array}\]
\[\]
Total amount received by the store from selling all the items is given by
\[XY = \begin{bmatrix}120 & 96 & 60\end{bmatrix}\begin{bmatrix}8 . 30 \\ 3 . 45 \\ 4 . 50\end{bmatrix}\]
\[ = \begin{bmatrix}\left( 120 \right)\left( 8 . 30 \right) + \left( 96 \right)\left( 3 . 45 \right) + \left( 60 \right)\left( 4 . 50 \right)\end{bmatrix}\]
\[ = \begin{bmatrix}996 + 331 . 20 + 270\end{bmatrix}\]
\[ = \begin{bmatrix}1597 . 20\end{bmatrix}\]
Required amount = Rs 1597.20
APPEARS IN
संबंधित प्रश्न
If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.
Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`
Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`
If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2
Construct a 2 × 2 matrix whose elements `a_(ij)`
are given by: `(i+j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)= (2i +j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|2_i - 3_i|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=e^(2ix) sin (xj)`
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = i + j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = 2i
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
`a_(ij)=1/2= -3i + j `
Construct a 4 × 3 matrix whose elements are
`a_(ij)=2_i+ i/j`
If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.
If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.
If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.
If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\] , find x.
`If A = ([3 5] , [7 9])` is written as A = P + Q, where as A = p + Q , Where P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
If the matrix AB is zero, then
If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type
If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\] then AT + A = I2, if
Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and "C" = [(2, 0, -2),(7, 1, 6)]`.