हिंदी

Construct a 3 × 4 Matrix A = [Aij] Whose Elements Aij Are Given By: `A_(Ij)=1/2= -3i + J ` - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

`a_(ij)=1/2= -3i + j `

उत्तर

`a_(ij)=1/2= -3i + j `

Here,

`a_(11)= 1/2 `|`-3(1)+1` |`=1/2|-2|=1 ,`

`a_12=1/2`|`-3(1)+2`| `=1/2 | -1 | = 1/2 ,

`a_13=1/2|-3(1)+3| =1/2 | 0 | =0, `

`a_14= 1/2 | -3 (1)+ 4 | = 1/2`

`a_21 = 1/2 | -3 (2) + 1 | = 1/2 | -5 | = 5/2 `

`a_22=1/2 | -3 (2)+2|= 1/2 |-4|=2 ,`

`a_23=1/2|-3(2)+ 3 | =1/2 , `

`a_24= 1/2 | -3 (2)+ 4| = 1/2 |-2 |= 1`

`a_31= 1/2 | -3(3)+ 1 | = 1/2 |-8| =4 ,`

`a_32 = 1/2 | -3 (3)+ 2 | = 1/2 |-7| = 7/2,`

`a_33 = 1/2 | - 3 (3)+ 3|=1/2|-6|=3  and `

`a_34 = 1/2 | -3 (3)+ 4 | = 1/2 |5|=5/2 `

So, the required matrix is `[[1    1/2    0    1/2],[5/2    2    3/2    1],[4    7/2   3    5/2]]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.1 | Q 6.5 | पृष्ठ ७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.


Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`


If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?


Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2


Construct a 2 × 2  matrix whose elements `a_(ij)`

are given by: `(i+j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`aij=(i-j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)= (2i +j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|2_i - 3_i|/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|-3i +j|/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=e^(2ix) sin (xj)`


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij = j


Construct a 4 × 3 matrix whose elements are

 aij = 


Given an example of

 a triangular matrix


If A = diag (abc), show that An = diag (anbncn) for all positive integer n.

 

If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.

 

A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.

 

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

If A and B are symmetric matrices, then write the condition for which AB is also symmetric.


If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.


If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.


If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\]  , find x.


`If A = ([3   5] , [7     9])` is written as A = P + Q, where as A = p + Q , Where  P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P. 


If the matrix AB is zero, then


If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\]  and A = AT, then


If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\]  then AT + A = I2, if


Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and  "C" = [(2, 0, -2),(7, 1, 6)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×