हिंदी

Construct a 2 × 2 Matrix Whose Elements Aij Are Given By: AIj=[-3i+J]2 - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a 2 × 2 matrix whose elements aij are given by:

aij=|-3i+j|2

योग

उत्तर

aij=|-3i+j|2

Here,

a11=|-3(1)+1|2=|-3+1|2=|-2|2=1,a12=|-3(1)+2|2=|-3+2|2=|-1|2=12

a21=|-3(2)+1|2=|-6+1|2=|-5|2=52, a22=|-3(2)+2|2=|-6+2|2=|-1|4=2

So, the required matrix is  [1 1252 2]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.1 | Q 5.6 | पृष्ठ ७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.


If A= (102021203) and A3 - 6A2 +7A + kI3 = O find k.


If [3x7-24]=[8764], find the value of x


If A = [aij] =[23-514907-2]and B = [bij] [2-1-3412]

then find (i) a22 + b21 (ii) a11 b11 + a22 b22

 

 


Construct a 2 × 2  matrix whose elements aij

are given by: (i+j)22


Construct a 2 × 2 matrix whose elements aij are given by:

aij=(i-2j)22


Construct a 2 × 2 matrix whose elements aij are given by:

aij=|2i-3i|2


Construct a 2 × 2 matrix whose elements aij are given by:

aij=e2ixsin(xj)


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij i + j


Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:

ajj = i − j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij=12=-3i+j


Construct a 4 × 3 matrix whose elements are

aij=2i+ij


Construct a 4 × 3 matrix whose elements are

aij=i-ji+j


Construct a 4 × 3 matrix whose elements are

 aij = 


The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.


If A=[cosθisinθisinθcosθ] then prove by principle of mathematical induction that An=[cos nθisinθisinnθcosnθ] for all n N.


If A = diag (abc), show that An = diag (anbncn) for all positive integer n.

 

If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.

 

A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.

 

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

If A and B are symmetric matrices, then write the condition for which AB is also symmetric.


If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.


If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.


If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.


If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.


If [x1][1020]=O  , find x.


Matrix A = [02b23133a31]  is given to be symmetric, find values of a and b.

 


IfA=(3  57   9) is written as A = P + Q, where as A = p + Q , Where  P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P. 


If A=[5xy0]  and A = AT, then


If A=[cosθsinθsinθcosθ]  then AT + A = I2, if


If 3A-B=[5011]andB=[4325], then find the martix A.


Find a matrix A such that 2A − 3B + 5C = 0, where B =[-220314]and C=[20-2716].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.