Advertisements
Advertisements
प्रश्न
If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n ∈ N.`
उत्तर
We shall prove the result by the principle of mathematical induction on n.
Step 1: If n = 1, by definition of integral power of a matrix, we have
\[A^1 = \begin{bmatrix}\cos 1\theta & i \sin1\theta \\ i \sin 1\theta & \cos 1\theta\end{bmatrix} = \begin{bmatrix}\cos\theta & i \sin\theta \\ i \sin\theta & \cos\theta\end{bmatrix} = A\]
Thus, the result is true for n=1.
Step 2: Let the result be true for n = m. Then,
`A^m = [[ cos mθ i sin mθ ],[i sin mθ cos mθ ]]`
Now we shall show that the result is true for
`n=m+1`
Here
\[A^{m + 1} = \begin{bmatrix}\ cos \left( m + 1 \right)\theta & i \ sin\left( m + 1 \right)\theta \\ i \ sin \left( m + 1 \right)\theta & \ cos \left( m + 1 \right)\theta\end{bmatrix}\] ...(1)
By definition of integral power of matrix, we have
\[A^{m + 1} = A^m A\]
`⇒ A^m+1 = [[ cos m θ i sin m θ],[ i sin m θ cos m θ ]]` `[[cos θ i sin θ ],[ i sin θ cos θ ]]` [From eq (1) ]
`⇒ A^m+1 = [[ cos m θ .cos θ+ i sin m θ.i sin θ cos m θ . i sin θ + i sin m θ . cos θ ],[ i sin m θ . cos θ + cos m θ . i sin θ i sin m θ . i sin θ + cos m θ .cos θ ]]`
`⇒ A^m+1 = [[ cos m θ .cos θ- sin m θ. sin θ i ( cos m θ . sin θ + sin m θ . cos θ )],[ i (sin m θ . cos θ + cos m θ . i sin θ ) - sin m θ . i sin θ + cos m θ .cos θ ]]`
`⇒ A^m+1 = [[ cos m θ .cos θ- sin m θ. sin θ i ( cos m θ . sin θ + sin m θ . cos θ )],[ i (sin m θ . cos θ + cos m θ . sin θ ) cos m θ .cos θ - sin m θ . sin θ ]]`
`⇒ A^m+1 =[[ cos (m θ + θ ) i sin (m θ + θ ) ], [ i sin (m θ + θ ) cos (m θ + θ )]]`
`⇒ A^m+1 =[[ cos (m + 1)θ i sin (m +1) θ ], [ i sin (m + 1 )θ cos (m + 1)θ ]]`
This shows that when the result is true for n = m, it is true for
`n=m+1`
Hence, by the principle of mathematical induction, the result is valid for all n
\[\in N\]
Disclaimer: n is missing before
\[\theta\] in a12 in An.
APPEARS IN
संबंधित प्रश्न
If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.
Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.
If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.
Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`
If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x
If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
Let A be a matrix of order 3 × 4. If R1 denotes the first row of A and C2 denotes its second column, then determine the orders of matrices R1 and C2
If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`
then find (i) a22 + b21 (ii) a11 b11 + a22 b22
Construct a 2 × 2 matrix whose elements `a_(ij)`
are given by: `(i+j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`aij=(i-j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=(i-2_j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|2_i - 3_i|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|-3i +j|/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=e^(2ix) sin (xj)`
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = i + j
Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:
ajj = i − j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = 2i
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
`a_(ij)=1/2= -3i + j `
Construct a 4 × 3 matrix whose elements are
`a_(ij)=2_i+ i/j`
Construct a 4 × 3 matrix whose elements are
`a_(ij)= (i-j)/(i+j )`
Given an example of
a triangular matrix
If A = diag (a, b, c), show that An = diag (an, bn, cn) for all positive integer n.
If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.
If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.
If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an even natural number, write whether An is symmetric or skew symmetric or neither of these two.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\] and A = AT, then
If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\] then AT + A = I2, if