Advertisements
Advertisements
प्रश्न
The sales figure of two car dealers during January 2013 showed that dealer A sold 5 deluxe, 3 premium and 4 standard cars, while dealer B sold 7 deluxe, 2 premium and 3 standard cars. Total sales over the 2 month period of January-February revealed that dealer A sold 8 deluxe 7 premium and 6 standard cars. In the same 2 month period, dealer B sold 10 deluxe, 5 premium and 7 standard cars. Write 2 × 3 matrices summarizing sales data for January and 2-month period for each dealer.
उत्तर
According to the data, dealer A sold 5 deluxe cars, 3 premium cars and 4 standard cars in January. Also, dealer B sold 7 deluxe cars, 2 premium cars and 3 standard cars in January.
The above information can be given by
Deluxe Premium Standard
Dealer A
Dealer B `[[ 5 3 4],[7 2 3]]`
Total sales over the period of January-February reveals that dealer A sold 8 deluxe cars, 7 premium cars and 6 standard cars, while dealer B sold 10 deluxe cars, 5 premium cars and 7 standard cars.
This information can be given by
Deluxe Premium Standard
Dealer A
Dealer B`[[8 7 6],[10 5 7]]`
APPEARS IN
संबंधित प्रश्न
If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.
Write the element a12 of the matrix A = [aij]2 × 2, whose elements aij are given by aij = e2ix sin jx.
Write the element a23 of a 3 ✕ 3 matrix A = (aij) whose elements aij are given by `a_(ij)=∣(i−j)/2∣`
If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`
then find (i) a22 + b21 (ii) a11 b11 + a22 b22
Construct a 2 × 2 matrix whose elements aij are given by:
`aij=(i-j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=(i-2_j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)= (2i +j)^2/2`
Construct a 2 × 2 matrix whose elements aij are given by:
`a_(ij)=|-3i +j|/2`
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = i + j
Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:
ajj = i − j
Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:
aij = j
Construct a 4 × 3 matrix whose elements are
`a_(ij)=2_i+ i/j`
Construct a 4 × 3 matrix whose elements are
`a_(ij)= (i-j)/(i+j )`
Construct a 4 × 3 matrix whose elements are
aij = i
Given an example of
a triangular matrix
If A = diag (a, b, c), show that An = diag (an, bn, cn) for all positive integer n.
A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal.
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.
If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If B is a symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.
If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.
If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.
Let A and B be matrices of orders 3 x 2 and 2 x
4 respectively. Write the order of matrix AB.
If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type
If `3"A" - "B" = [(5,0),(1,1)] and "B" = [(4,3),(2,5)]`, then find the martix A.
Find a matrix A such that 2A − 3B + 5C = 0, where B =`[(-2, 2, 0), (3, 1, 4)] and "C" = [(2, 0, -2),(7, 1, 6)]`.