हिंदी

If a is a Skew-symmetric Matrix and N is an Odd Natural Number, Write Whether an is Symmetric Or Skew-symmetric Or Neither of the Two. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a skew-symmetric matrix and n is an odd natural number, write whether An is symmetric or skew-symmetric or neither of the two.

योग

उत्तर

`If A  is  a  skew - symmetric  matrix, then  A^T = - A`

`( A^n )^T = ( A^T)^n [  " For "all  n  ∈  N ]`

\[ \Rightarrow \left( A^n \right)^T = \left( - A \right)^n \left[ \because A^T = - A \right]\] 

\[ \Rightarrow \left( A^n \right)^T = \left( - 1 \right)^n A^n \] 

\[ \Rightarrow \left( A^n \right)^T = A^n , \text{if n is even or - A^n , if n is odd} .\]

Hence, `( A)^n `is skew-symmetric when n is an odd natural number.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.6 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.6 | Q 29 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If `A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5 A + 16 I.


If A= `((1,0,2),(0,2,1),(2,0,3))` and A3 - 6A2 +7A + kI3 = O find k.


Find the maximum value of `|(1,1,1),(1,1+sintheta,1),(1,1,1+costheta)|`


If `[[3x,7],[-2,4]]=[[8,7],[6,4]]`, find the value of x


If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?


If A = [aij] =`[[2,3,-5],[1,4,9],[0,7,-2]]`and B = [bij] `[[2,-1],[-3,4],[1,2]]`

then find (i) a22 + b21 (ii) a11 b11 + a22 b22

 

 


Construct a 2 × 2  matrix whose elements `a_(ij)`

are given by: `(i+j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`aij=(i-j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=(i-2_j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)= (2i +j)^2/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=|2_i - 3_i|/2`


Construct a 2 × 2 matrix whose elements aij are given by:

`a_(ij)=e^(2ix) sin (xj)`


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

aij i + j


Construct a 3 × 4 matrix A = [ajj] whose elements ajj are given by:

ajj = i − j


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

 aij = 2i


Construct a 3 × 4 matrix A = [aij] whose elements aij are given by:

`a_(ij)=1/2= -3i + j `


Construct a 4 × 3 matrix whose elements are

`a_(ij)= (i-j)/(i+j )`


Given an example of

 a triangular matrix


If `A=[[cos θ, i sinθ],[i sinθ,cosθ]]` then prove by principle of mathematical induction that `A^n=[[cos  nθ,i sinθ],[i sin nθ,cos nθ]]` for all `n  ∈ N.`


If A = diag (abc), show that An = diag (anbncn) for all positive integer n.

 

If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.

 

If B is a skew-symmetric matrix, write whether the matrix AB AT is symmetric or skew-symmetric.


If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.


If A is a symmetric matrix and n ∈ N, write whether An is symmetric or skew-symmetric or neither of these two.


If \[\begin{bmatrix}x & 1\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 2 & 0\end{bmatrix} = O\]  , find x.


Matrix A = \[\begin{bmatrix}0 & 2b & - 2 \\ 3 & 1 & 3 \\ 3a & 3 & - 1\end{bmatrix}\]  is given to be symmetric, find values of a and b.

 


`If A = ([3   5] , [7     9])` is written as A = P + Q, where as A = p + Q , Where  P is a symmetric matrix and Q is skew symmetric matrix , then wqrite the matrix P. 


If the matrix AB is zero, then


If \[A = \begin{bmatrix}5 & x \\ y & 0\end{bmatrix}\]  and A = AT, then


If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined. Then, B is of the type 


If \[A = \begin{bmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{bmatrix}\]  then AT + A = I2, if


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×