हिंदी

If A And B Are Symmetric Matrices of the Same Order, Write Whether Ab − Ba Is Symmetric Or Skew-symmetric Or Neither of the Two. - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.

योग

उत्तर

Since A and B are symmetric matrices, \[A^T =\text{ A and }B^T = B\]
Here,

\[\left( AB - BA \right)^T = \left( AB \right)^T - \left( BA \right)^T \] 

\[ \Rightarrow \left( AB - BA \right)^T = B^T A^T - A^T B^T \left[ \because \left( AB \right)^T = B^T A^T \right]\] 

\[ \Rightarrow \left( AB - BA \right)^T = BA - AB \left[ \because B^T = \text{B and}    A^T = A \right]\] 

\[ \Rightarrow \left( AB - BA \right)^T = - \left( AB - BA \right)\] 
Therefore, AB - BA is skew - symmetric .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.6 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.6 | Q 30 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A is a skew symmetric matric of order 3, then prove that det A  = 0


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If a matrix A is both symmetric and skew-symmetric, then


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A is a square matrix, then AA is a


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A is a skew-symmetric matrix, then A2 is a ______.


If A is symmetric matrix, then B′AB is ______.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


The diagonal elements of a skew symmetric matrix are ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×