मराठी

If A And B Are Symmetric Matrices of the Same Order, Write Whether Ab − Ba Is Symmetric Or Skew-symmetric Or Neither of the Two. - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.

बेरीज

उत्तर

Since A and B are symmetric matrices, \[A^T =\text{ A and }B^T = B\]
Here,

\[\left( AB - BA \right)^T = \left( AB \right)^T - \left( BA \right)^T \] 

\[ \Rightarrow \left( AB - BA \right)^T = B^T A^T - A^T B^T \left[ \because \left( AB \right)^T = B^T A^T \right]\] 

\[ \Rightarrow \left( AB - BA \right)^T = BA - AB \left[ \because B^T = \text{B and}    A^T = A \right]\] 

\[ \Rightarrow \left( AB - BA \right)^T = - \left( AB - BA \right)\] 
Therefore, AB - BA is skew - symmetric .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.6 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.6 | Q 30 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


Sum of two skew-symmetric matrices is always ______ matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are symmetric matrices of the same order, then ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×