मराठी

If A = [cosαsinα-sinαcosα] then verify that A' A = I - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I

बेरीज

उत्तर

Given, A = `[(cos  alpha, sin  alpha), (-sin  alpha, cos  alpha)]`

So, A' =`[(cos  alpha, -sin  alpha), (sin  alpha, cos  alpha)]`

Now, A' A = `[(cos  alpha, -sin  alpha), (sin  alpha, cos  alpha)] xx [(cos  alpha, sin  alpha), (-sin  alpha, cos  alpha)]`

`= [(cos^2 alpha+ sin^2 alpha, cos  alpha  sin  alpha - sin  alpha  cos  alpha),(sin  alpha  cos  alpha - cos  alpha  sin  alpha, sin^2 + cos^2 alpha)]`

`= [(1,0),(0,1)] = I         ...["Because"  sin^2 alpha + cos^2 alpha = 1]`

Hence, A' A = I

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise 3.3 [पृष्ठ ८९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 3 Matrices
Exercise 3.3 | Q 6.1 | पृष्ठ ८९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


If the matrix A is both symmetric and skew symmetric, then ______.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


Write a square matrix which is both symmetric as well as skew-symmetric.


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A is a square matrix, then AA is a


If A and B are symmetric matrices, then ABA is


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.


AA′ is always a symmetric matrix for any matrix A.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


The diagonal elements of a skew symmetric matrix are ____________.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×