Advertisements
Advertisements
प्रश्न
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
उत्तर
Let A = `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`
A = `[(0, 2, "c"),("a", "b", 1),(3, -1, 0)]`
For skew symmetric matrix, A' = – A.
⇒ `[(0, 2, "c"),("a", "b", 1),(3, -1, 0)] = -[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`
⇒ `[(0, 2, "c"),("a", "b", 1),(3, -1, 0)] = [(0, -"a", -3),(-2, -"b", 1),(-"c", -1, 0)]`
Equating the corresponding elements, we get
a = – 2, b = – b
⇒ 2b = 0
⇒ b = 0
And c = – 3
Hence, a = – 2, b = 0 and c = – 3.
APPEARS IN
संबंधित प्रश्न
If A is a skew symmetric matric of order 3, then prove that det A = 0
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
If a matrix A is both symmetric and skew-symmetric, then
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is symmetric matrix, then B′AB is ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
AA′ is always a symmetric matrix for any matrix A.
If A and B are symmetric matrices of the same order, then ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?
If A and B are symmetric matrices of the same order, then AB – BA is ______.