Advertisements
Advertisements
प्रश्न
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
उत्तर
Let A = [aij] be a matrix which is both symmetric and skew-symmetric.
Since A is a skew-symmetric matrix, so A′ = –A.
Thus for all i and j, we have aij = – aji ......(1)
Again, since A is a symmetric matrix, so A′ = A.
Thus, for all i and j, we have
aji = aij ......(2)
Therefore, from (1) and (2), we get
aij = – aij for all i and j
or
2aij = 0
i.e., aij = 0 for all i and j.
Hence A is a zero matrix.
APPEARS IN
संबंधित प्रश्न
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
If the matrix A is both symmetric and skew symmetric, then ______.
Show that all the diagonal elements of a skew symmetric matrix are zero.
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If a matrix A is both symmetric and skew-symmetric, then
If A is a square matrix, then AA is a
If A and B are symmetric matrices, then ABA is
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
Sum of two skew-symmetric matrices is always ______ matrix.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then BA – 2AB is a ______.
If A is symmetric matrix, then B′AB is ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If A is any square matrix, then which of the following is skew-symmetric?
If A = [aij] is a skew-symmetric matrix of order n, then ______.
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?