Advertisements
Advertisements
प्रश्न
Write a square matrix which is both symmetric as well as skew-symmetric.
उत्तर
\[Let A = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \]
\[ A^T = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
`"Since" A^T = A, A is a symmmetric matrix `
\[Now, \]
\[ - A = - \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \]
\[ \Rightarrow - A = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\]
`"Since" A^T = - A, A is a skew - symmetric matrix . `
Thus,` A= [[0 0 ],[0 0]] `is an example of a matrix that is both symmetric and skew - symmetric.
APPEARS IN
संबंधित प्रश्न
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If A and B are symmetric matrices, then ABA is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If A and B are symmetric matrices of the same order, then ____________.
If A is any square matrix, then which of the following is skew-symmetric?
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
The diagonal elements of a skew symmetric matrix are ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.
Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?
If A and B are symmetric matrices of the same order, then AB – BA is ______.