हिंदी

Write a Square Matrix Which is Both Symmetric as Well as Skew-symmetric. - Mathematics

Advertisements
Advertisements

प्रश्न

Write a square matrix which is both symmetric as well as skew-symmetric.

योग

उत्तर

\[Let A = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \] 

\[ A^T = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] 

`"Since"   A^T = A,  A  is  a  symmmetric  matrix `

\[Now, \] 

\[ - A = - \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \] 

\[ \Rightarrow - A = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] 

`"Since"    A^T = - A,   A  is  a  skew - symmetric  matrix . `

Thus,` A= [[0  0  ],[0  0]]  `is an example of a matrix that is both symmetric and skew - symmetric. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.6 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.6 | Q 31 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If a matrix A is both symmetric and skew-symmetric, then


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×