Advertisements
Advertisements
प्रश्न
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
उत्तर
Now, (A - A') = `[(1,5),(6,7)] - [(1,6),(5,7)]`
`= [(1 - 1, 5 - 6), (6 - 5, 7 - 7)]`
`= [(0, -1), (1,0)]`
Then, (A - A') `= [(0, 1), (-1,0)] = - [(0, -1), (1,0)]`
चूँकि (A - A') = -(A - A'),
Since (A - A') = -(A - A'), it proves that the matrix (A - A') is a skew symmetric matrix.
APPEARS IN
संबंधित प्रश्न
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
If the matrix A is both symmetric and skew symmetric, then ______.
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
Write a square matrix which is both symmetric as well as skew-symmetric.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If a matrix A is both symmetric and skew-symmetric, then
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If A and B are symmetric matrices, then ABA is
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then BA – 2AB is a ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
AA′ is always a symmetric matrix for any matrix A.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If A is any square matrix, then which of the following is skew-symmetric?
If A, B are Symmetric matrices of same order, then AB – BA is a
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.