Advertisements
Advertisements
प्रश्न
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
उत्तर
Here, A = `[(0,2y,z),(x,y,-z),(y,-y,z)]`
⇒ A' = `[(0,x,x),(2y,y,-y),(z,-z,z)]`
∴ A'A = `[(0,x,x),(2y,y,-y),(z,-z,z)][(0,2y,z),(x,y,-z),(x,-y,z)]`
= `[(1,0,0),(0,1,0),(0,0,1)]`
= `[(0 + x^2 + x^2, 0 + xy - xy, -xz + xz),(0 + yz - yx, 4y^2 + y^2 + y^2, 2yz - yz - yz),(0 - zx + 2x, 2yz - zy - zy, z^2 + z^2 + z^2)]`
= `[(1,0,0),(0,1,0),(0,0,1)]`
= `[(2x^2,0,0),(6,6y^2,0),(0,0,3z^2)] = [(1,0,0),(0,1,0),(0,0,1)]`
∴ `2x^2 = 1, x = ±1/sqrt2,`
`6y^2 = 1, y = ±1/sqrt6,`
3z2 = 1
∴ z = ±`1/sqrt3`
Hence, x = `±1/sqrt2, y = ±1/sqrt6, z = ±1/sqrt3`
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If A is a skew symmetric matric of order 3, then prove that det A = 0
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If A and B are matrices of the same order, then ABT − BAT is a
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A and B are symmetric matrices, then BA – 2AB is a ______.
If A is symmetric matrix, then B′AB is ______.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
The diagonal elements of a skew symmetric matrix are ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.