हिंदी

The matrix [0-585012-8-120] is a ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.

विकल्प

  • Diagonal matrix

  • Symmetric matrix

  • Skew-symmetric matrix

  • Scalar matrix

MCQ
रिक्त स्थान भरें

उत्तर

The matrix `[(0, -5,8),(5, 0, 12),(-8, -12, 0)]` is a skew symmetric matrix.

Explanation:

Let A = `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`

A' = `[(0, 5, -8),(-5, 0, -12),(8, 12, 0)]`

⇒ A' = `-[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` = – A

A' = – A

So A is a skew-symmetric matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 61 | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


If A is a skew symmetric matric of order 3, then prove that det A  = 0


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


If a matrix A is both symmetric and skew-symmetric, then


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


If A is symmetric matrix, then B′AB is ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


The diagonal elements of a skew symmetric matrix are ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×