हिंदी

If [2054] = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.

विकल्प

  • `[(2, 5//2),(5//2, 4)]`

  • `[(0, 5//2),(-5//2, 0)]`

  • `[(0, -5//2),(5//2, 0)]`

  • `[(2, -5//2),(5//2, 4)]`

MCQ
रिक्त स्थान भरें

उत्तर

If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to `underlinebb([(0, -5//2),(5//2, 0)])`.

Explanation:

Given `[(2, 0),(5, 4)]` = P + Q

For any matrix A, we have

A = `1/2 [(A + A^') + (A - A^')]`

= `(A + A^')/2 + (A - A^')/2`

where, `(A - A^')/2` is a symmetric matrix i.e., Q,

∴ Q = `1/2{[(2, 0),(5, 4)]-[(2, 5),(0, 4)]}`

= `1/2[(0, -5),(5, 0)]`

= `[(0, -5//2),(5//2, 0)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Outside Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A is a skew symmetric matric of order 3, then prove that det A  = 0


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]`  then find (A + 2B)'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


Write a square matrix which is both symmetric as well as skew-symmetric.


If A and B are matrices of the same order, then ABT − BAT is a 


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A is a skew-symmetric matrix, then A2 is a ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


AA′ is always a symmetric matrix for any matrix A.


If A and B are symmetric matrices of the same order, then ____________.


The diagonal elements of a skew symmetric matrix are ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×