Advertisements
Advertisements
प्रश्न
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
उत्तर
to suppose, A = `[(3,5),(1, -1)],` A' =`[(3,1),(5, -1)]`
So, A `1/2` (A + A') + `1/2` (A - A')
Let, P = `1/2` (A + A') = `1/2 ([(3, 5),(1, -1)]) + ([(3, 1),(5, -1)])`
`= 1/2 [(3 + 3, 5 + 1), (1 + 5, -1 -1)]`
`= 1/2 [(6, 6), (6, -2)]`
`= [(3, 3), (3, -1)]`
and, `"P'" = [(3, 3), (3, -1)] = "P",`
Therefore, the matrix P is a symmetric matrix.
Then, Q = `1/2` (A - A') = `1/2 ([(3, 5),(1, -1)]) - ([(3, 1),(5, -1)])`
`= 1/2 [(3 - 3, 5 -1), (1 - 5, -1 + 1)]`
`= 1/2 [(0,4), (-4, 0)]`
`= [(0,2), (-2, 0)]`
and, Q' = `[(0,2), (-2, 0)]` = - Q,
Hence the matrix Q is a skew symmetric matrix.
So, A = P + Q
= `[(3, 3), (3, -1)] + [(0, -2),(-2, 0)]`
APPEARS IN
संबंधित प्रश्न
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Show that all the diagonal elements of a skew symmetric matrix are zero.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
If a matrix A is both symmetric and skew-symmetric, then
If A is a square matrix, then AA is a
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then BA – 2AB is a ______.
AA′ is always a symmetric matrix for any matrix A.
If A and B are symmetric matrices of the same order, then ____________.
If A and B are symmetric matrices of the same order, then ____________.
Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.
If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?
If A and B are symmetric matrices of the same order, then AB – BA is ______.