हिंदी

If a = [ 1 2 0 3 ] is Written as B + C, Where B is a Symmetric Matrix and C is a Skew-symmetric Matrix, Then B is Equal To. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.

योग

उत्तर

\[Given: A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\]

\[ \Rightarrow A^T = \begin{bmatrix}1 & 0 \\ 2 & 3\end{bmatrix}\]

\[\text{Let B} = \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\left( \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 2 & 3\end{bmatrix} \right)\]

\[ = \frac{1}{2}\begin{bmatrix}1 + 1 & 2 + 0 \\ 0 + 2 & 3 + 3\end{bmatrix}\]

\[ = \frac{1}{2}\begin{bmatrix}2 & 2 \\ 2 & 6\end{bmatrix}\]

\[ = \begin{bmatrix}1 & 1 \\ 1 & 3\end{bmatrix}\]

\[Now, \]

\[ B^T = \begin{bmatrix}1 & 1 \\ 1 & 3\end{bmatrix} = B\]

\[ \text{Therefore, B is symmetric matrix }. \]

\[Let C = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\left( \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix} - \begin{bmatrix}1 & 0 \\ 2 & 3\end{bmatrix} \right)\]

\[ = \frac{1}{2}\begin{bmatrix}1 - 1 & 2 - 0 \\ 0 - 2 & 3 - 3\end{bmatrix}\]

\[ = \frac{1}{2}\begin{bmatrix}0 & 2 \\ - 2 & 0\end{bmatrix}\]

\[ = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix}\]

\[ \therefore C^T = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix}^T = \begin{bmatrix}0 & - 1 \\ 1 & 0\end{bmatrix} = - \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} = C\]

\[So, \text{C is a skew - symmetric matrix }. \]

\[Now, \]

\[B + C = \begin{bmatrix}1 & 1 \\ 1 & 3\end{bmatrix} + \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} = \begin{bmatrix}1 + 0 & 1 + 1 \\ 1 - 1 & 3 + 0\end{bmatrix} = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix} = A\]

\[ \therefore B = \begin{bmatrix}1 & 1 \\ 1 & 3\end{bmatrix}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.6 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.6 | Q 45 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(1,5),(-1,2)]`


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


If the matrix A is both symmetric and skew symmetric, then ______.


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


If A is a square matrix, then AA is a


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


If A and B are matrices of the same order, then ABT − BAT is a 


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


Show that A′A and AA′ are both symmetric matrices for any matrix A.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


Sum of two skew-symmetric matrices is always ______ matrix.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A is symmetric matrix, then B′AB is ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A and B are symmetric matrices of the same order, then ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A = [aij] is a skew-symmetric matrix of order n, then ______.


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×