हिंदी

If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.

विकल्प

  • Skew symmetric matrix

  • Null matrix

  • Symmetric matrix

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a skew-symmetric matrix.

Explanation:

(AB′ –BA′)′ = (AB′)′ – (BA′)′

= (BA′ – AB′)

= – (AB′ –BA′)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Solved Examples [पृष्ठ ५१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Solved Examples | Q 12 | पृष्ठ ५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A is symmetric matrix, then B′AB is ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


AA′ is always a symmetric matrix for any matrix A.


If A and B are symmetric matrices of the same order, then ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


The diagonal elements of a skew symmetric matrix are ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×