Advertisements
Advertisements
प्रश्न
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
उत्तर
A = `[(6,-2,2),(-2,3,-1),(2,-1,3)]`
`=> "A'" = [(6,-2,2),(-2,3,-1),(2,-1,3)]`
`therefore "A" + "A'" = [(6,-2,2),(-2,3,-1),(2,-1,3)] + [(6,-2,2),(-2,3,-1),(2,-1,3)]`
`= [(6 + 6, -2 - 2, 2 + 2),(-1 -1, 3 + 3, -1 - 1),(2 + 2, -1 -1, 3 + 3)]`
`= [(12,-4,4),(-4,6,-2),(4,-2,6)]`
`therefore 1/2 ("A" + "A'") = 1/2 [(12,-4,4),(-4,6,-2),(4,-2,6)]`
= `[(6,-2,2),(-2,3,-1),(4,-1,3)]` = is a symmetric matrix.
`therefore "and" ("A" - "A'") = [(6,-2,2),(-2,3,-1),(4,-1,3)]- [(6,-2,2),(-2,3,-1),(4,-1,3)]`
`= [(0,0,0),(0,0,0),(0,0,0)]`
`therefore 1/2 ("A" - "A'") + 1/2 [(0,0,0),(0,0,0),(0,0,0)] = 0`
Hence, A `= 1/2 ("A" + "A'") + 1/2 ("A" - "A'")`
`= [(6,-2,2),(-2,3,-1),(2,-1,3)] + [(0,0,0),(0,0,0),(0,0,0)]`
`= [(6,-2,2),(-2,3,-1),(2,-1,3)] = "A"`
APPEARS IN
संबंधित प्रश्न
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Show that all the diagonal elements of a skew symmetric matrix are zero.
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
Write a square matrix which is both symmetric as well as skew-symmetric.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If A is a square matrix, then AA is a
If A and B are symmetric matrices, then ABA is
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A and B are symmetric matrices, then AB – BA is a ______.
If A is symmetric matrix, then B′AB is ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
AA′ is always a symmetric matrix for any matrix A.
If A and B are symmetric matrices of the same order, then ____________.
If A and B are symmetric matrices of the same order, then ____________.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A is any square matrix, then which of the following is skew-symmetric?
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?