हिंदी

Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

योग

उत्तर

(i) Let A be a symmetric matrix.

Then A’ = A

∴ (B’ AB) = (B’ (AB)) = (AB)'(B’)’

= (B’A’)B

=B’ AB [∵ (AB)’ = B’A’ and A’ = A]

⇒ B’ AB is a symmetric matrix.

(ii) Let A be a skew-symmetric matrix.

∴ A’ = -A

Now, (B'(AB))’ = (AB)’ (B’)’ = (B’A’)B

= B'(-A)B = -B’ AB [∵ A’ = -A]

= -(B’ AB)

Hence, B’ AB is a skew symmetric matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise 3.5 [पृष्ठ १००]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise 3.5 | Q 5 | पृष्ठ १००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Show that all the diagonal elements of a skew symmetric matrix are zero.


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


Write a square matrix which is both symmetric as well as skew-symmetric.


If a matrix A is both symmetric and skew-symmetric, then


If A is a square matrix, then AA is a


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


If A and B are matrices of the same order, then ABT − BAT is a 


Show that A′A and AA′ are both symmetric matrices for any matrix A.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


______ matrix is both symmetric and skew-symmetric matrix.


If A is a skew-symmetric matrix, then A2 is a ______.


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A and B are symmetric matrices of the same order, then ____________.


If A is any square matrix, then which of the following is skew-symmetric?


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×