Advertisements
Advertisements
प्रश्न
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
(A2)' = (A')2
= [– A]2 ....[∵ A' = – A]
= A2
So, A2 is a symmetric matrix.
APPEARS IN
संबंधित प्रश्न
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
If the matrix A is both symmetric and skew symmetric, then ______.
If a matrix A is both symmetric and skew-symmetric, then
If A and B are symmetric matrices, then ABA is
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
Sum of two skew-symmetric matrices is always ______ matrix.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
AA′ is always a symmetric matrix for any matrix A.
If A and B are symmetric matrices of the same order, then ____________.
Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.