English

If A is skew-symmetric matrix, then A2 is a symmetric matrix. - Mathematics

Advertisements
Advertisements

Question

If A is skew-symmetric matrix, then A2 is a symmetric matrix.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

Explanation:

(A2)' = (A')2

= [– A]2   ....[∵ A' = – A]

= A2

So, A2 is a symmetric matrix.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise [Page 64]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 3 Matrices
Exercise | Q 100 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


If A`((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.

 


If A is a skew symmetric matric of order 3, then prove that det A  = 0


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If A and B are symmetric matrices, then ABA is


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices, then BA – 2AB is a ______.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


AA′ is always a symmetric matrix for any matrix A.


If A is any square matrix, then which of the following is skew-symmetric?


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×