Advertisements
Advertisements
Question
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
Options
m × 3
3 × 3
m × n
3 × n
Solution
Since, the order of both A and B are same.
i.e., 3 × m or 3 × n.
Therefore, the order of 5A − 2B is also 3 × m or 3 × n.
Hence, the correct option is (d).
APPEARS IN
RELATED QUESTIONS
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(0), (1),(2)] , B =[1 , 5, 7]`
Show that the matrix A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Show that all the diagonal elements of a skew symmetric matrix are zero.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
______ matrix is both symmetric and skew-symmetric matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A and B are symmetric matrices of the same order, then ____________.
If A and B are symmetric matrices of the same order, then ____________.
The diagonal elements of a skew symmetric matrix are ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?