Advertisements
Advertisements
Question
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
Solution
Given, `"A" = [(1),(-4), (3)], "B" = [(-1, 2, 1)]`
So, AB = `[(1),(-4), (3)] xx [(-1, 2, 1)]`
`= [(1 xx (-1), 1 xx 2, 1 xx 1), (-4 xx (-1), -4 xx 2, -4 xx 1),(3 xx (-1), 3 xx 2, 3 xx 1)]`
`= [(-1, 2, 1), (4, -8, -4), (-3,6,3)]`
Now, (AB)' = `[(-1, 4, -3),(2,-8,6), (1, -4, 3)]` ....(i)
A' `= [(1, -4, 3)]` and B' `= [(-1),(2),(1)]`
Now, B'A' = `[(-1),(2),(1)] xx [(1, -4, 3)]`
`= [(-1 xx 1, -1 xx (-4), -1 xx 3),(2 xx 1, 2 xx (-4), 2 xx 3), (1 xx 1, 1 xx (-4), 1 xx 3)]`
`= [(-1, 4, -3),(2,-8,6),(1,-4,3)]` ....(ii)
It is proved from the equation and that, (AB)' = B'A'
APPEARS IN
RELATED QUESTIONS
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Show that all the diagonal elements of a skew symmetric matrix are zero.
If a matrix A is both symmetric and skew-symmetric, then
If A is a square matrix, then AA is a
If A and B are symmetric matrices, then ABA is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
The matrix `[(1, 0, 0),(0, 2, 0),(0, 0, 4)]` is a ______.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices, then BA – 2AB is a ______.
If A is symmetric matrix, then B′AB is ______.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A is any square matrix, then which of the following is skew-symmetric?
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?