English

If a is a Square Matrix, Then Aa is a - Mathematics

Advertisements
Advertisements

Question

If A is a square matrix, then AA is a

Options

  • skew-symmetric matrix

  • symmetric matrix

  • diagonal matrix 

  • none of these

MCQ

Solution

none of these 

Given: A is a square matrix.

\[Let A = \begin{bmatrix}1 & 2 \\ 1 & 0\end{bmatrix}\]

\[ \Rightarrow AA = \begin{bmatrix}1 & 2 \\ 1 & 0\end{bmatrix}\begin{bmatrix}1 & 2 \\ 1 & 0\end{bmatrix} = \begin{bmatrix}3 & 2 \\ 1 & 2\end{bmatrix}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.7 [Page 67]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.7 | Q 19 | Page 67

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b


if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


For the matrices A and B, verify that (AB)′ = B'A'  where `A =[(0), (1),(2)] , B =[1 , 5, 7]`


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Find `1/2` (A + A')  and  `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(1,5),(-1,2)]`


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


Write a square matrix which is both symmetric as well as skew-symmetric.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


If A and B are symmetric matrices, then ABA is


If A and B are matrices of the same order, then ABT − BAT is a 


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


If A is a symmetric matrix, then A3 is a ______  matrix.


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


AA′ is always a symmetric matrix for any matrix A.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If A and B are symmetric matrices of the same order, then ____________.


Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×