English

If A And B Are Symmetric Matrices of the Same Order, Write Whether Ab − Ba Is Symmetric Or Skew-symmetric Or Neither of the Two. - Mathematics

Advertisements
Advertisements

Question

If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.

Sum

Solution

Since A and B are symmetric matrices, \[A^T =\text{ A and }B^T = B\]
Here,

\[\left( AB - BA \right)^T = \left( AB \right)^T - \left( BA \right)^T \] 

\[ \Rightarrow \left( AB - BA \right)^T = B^T A^T - A^T B^T \left[ \because \left( AB \right)^T = B^T A^T \right]\] 

\[ \Rightarrow \left( AB - BA \right)^T = BA - AB \left[ \because B^T = \text{B and}    A^T = A \right]\] 

\[ \Rightarrow \left( AB - BA \right)^T = - \left( AB - BA \right)\] 
Therefore, AB - BA is skew - symmetric .

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.6 [Page 63]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.6 | Q 30 | Page 63

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `A = [(-1,2,3),(5,7,9),(-2,1,1)]  "and"  B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`


Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


Write a square matrix which is both symmetric as well as skew-symmetric.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If a matrix A is both symmetric and skew-symmetric, then


If A is a square matrix, then AA is a


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A is symmetric matrix, then B′AB is ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


AA′ is always a symmetric matrix for any matrix A.


If A and B are symmetric matrices of the same order, then ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×