Advertisements
Advertisements
Question
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
Solution
\[Given: A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\]
\[ \Rightarrow A^T = \begin{bmatrix}1 & 0 \\ 2 & 3\end{bmatrix}\]
\[\text{Let B} = \frac{1}{2}\left( A + A^T \right) = \frac{1}{2}\left( \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix} + \begin{bmatrix}1 & 0 \\ 2 & 3\end{bmatrix} \right)\]
\[ = \frac{1}{2}\begin{bmatrix}1 + 1 & 2 + 0 \\ 0 + 2 & 3 + 3\end{bmatrix}\]
\[ = \frac{1}{2}\begin{bmatrix}2 & 2 \\ 2 & 6\end{bmatrix}\]
\[ = \begin{bmatrix}1 & 1 \\ 1 & 3\end{bmatrix}\]
\[Now, \]
\[ B^T = \begin{bmatrix}1 & 1 \\ 1 & 3\end{bmatrix} = B\]
\[ \text{Therefore, B is symmetric matrix }. \]
\[Let C = \frac{1}{2}\left( A - A^T \right) = \frac{1}{2}\left( \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix} - \begin{bmatrix}1 & 0 \\ 2 & 3\end{bmatrix} \right)\]
\[ = \frac{1}{2}\begin{bmatrix}1 - 1 & 2 - 0 \\ 0 - 2 & 3 - 3\end{bmatrix}\]
\[ = \frac{1}{2}\begin{bmatrix}0 & 2 \\ - 2 & 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix}\]
\[ \therefore C^T = \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix}^T = \begin{bmatrix}0 & - 1 \\ 1 & 0\end{bmatrix} = - \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} = C\]
\[So, \text{C is a skew - symmetric matrix }. \]
\[Now, \]
\[B + C = \begin{bmatrix}1 & 1 \\ 1 & 3\end{bmatrix} + \begin{bmatrix}0 & 1 \\ - 1 & 0\end{bmatrix} = \begin{bmatrix}1 + 0 & 1 + 1 \\ 1 - 1 & 3 + 0\end{bmatrix} = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix} = A\]
\[ \therefore B = \begin{bmatrix}1 & 1 \\ 1 & 3\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
Show that all the diagonal elements of a skew symmetric matrix are zero.
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
If A is a square matrix, then AA is a
If A and B are symmetric matrices, then ABA is
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
______ matrix is both symmetric and skew-symmetric matrix.
If A and B are symmetric matrices, then BA – 2AB is a ______.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A and B are symmetric matrices of the same order, then ____________.
If A is any square matrix, then which of the following is skew-symmetric?
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?
If A and B are symmetric matrices of the same order, then AB – BA is ______.