English

If A = [sinαcosα-cosαsinα] then verify that A'A = I - Mathematics

Advertisements
Advertisements

Question

If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I

Sum

Solution

Given, A =  `[(sin  alpha, cos  alpha),(-cos  alpha, sin  alpha)]`

So, A' = `[(sin  alpha, -cos  alpha),(cos  alpha, sin  alpha)]`

Now, A' A = `[(sin  alpha, -cos  alpha),(cos  alpha, sin  alpha)] xx [(sin  alpha, cos  alpha),(-cos  alpha, sin  alpha)]`

`= [(sin^2 alpha+ cos^2 alpha, sin  alpha   cos alpha - cos alpha sin alpha),(cos  alpha  sin  alpha - sin  alpha  cos  alpha, cos^2 alpha + sin^2 alpha)]`

`= [(1, 0),(0,1)] = I`          ... [Because `sin^2 alpha + cos^2 alpha = 1`]

Hence, it is proved that, A'A = I

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise 3.3 [Page 89]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 3 Matrices
Exercise 3.3 | Q 6.2 | Page 89

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


Show that the matrix  A = `[(1,-1,5),(-1,2,1),(5,1,3)]` is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.


Write a square matrix which is both symmetric as well as skew-symmetric.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is


If A and B are symmetric matrices, then ABA is


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


The matrix  \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a 

 

The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`


Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.


If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


Sum of two skew-symmetric matrices is always ______ matrix.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


AA′ is always a symmetric matrix for any matrix A.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A is any square matrix, then which of the following is skew-symmetric?


If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.


If A, B are Symmetric matrices of same order, then AB – BA is a


If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.


Let A and B be and two 3 × 3 matrices. If A is symmetric and B is skewsymmetric, then the matrix AB – BA is ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


If A and B are symmetric matrices of the same order, then AB – BA is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×