English

If ax4 + bx3 + cx2 + dx + e = |2xx-1x+1x+1x2-xx-1x-1x+13x|, then the value of e is ______. -

Advertisements
Advertisements

Question

If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is ______.

Options

  • 0

  • –2

  • 3

  • –1

MCQ
Fill in the Blanks

Solution

If ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`, then the value of e is 0.

Explanation:

ax4 + bx3 + cx2 + dx + e = `|(2x, x - 1, x + 1),(x + 1, x^2 - x, x - 1),(x - 1, x + 1, 3x)|`

Put x = 0 both sides

e = `|(0, -1, 1),(1, 0, -1),(-1, 1, 0)|` = 0 ...(Skew symmetric)

∴ e = 0

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×