English

Let A = [23-12]. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also. - Mathematics

Advertisements
Advertisements

Question

Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.

Sum

Solution

We have A2 = `[(2, 3),(-1, 2)] [(2, 3),(-1, 2)] = [(1, 12),(-4, 1)]`

– 4A = `[(-8, -12),(4, -8)]` and 7I = `[(7, 0),(0, 7)]`

Therefore, A2 – 4A + 7I = `[(1 - 8 + 7, 12 - 12 + 0),(-4 + 4 + 0, 1 - 8 + 7)]`

= `[(0, 0),(0, 0)]`

= O

⇒ A2 – 4A + 7I

Thus A3 = A.A2 = A(4A – 7I)

= 4(4A – 7I) – 7A

= 16A – 28I – 7A = 9A – 28I

and so A5 = A3A2

= (9A – 28I) (4A – 7I)

= 36A2 – 63A – 112A + 196I

= 36(4A – 7I) – 175A + 196I

= – 31A – 56I

= `-3"I"[(2, 3),(-1, 2)] -56[(1, 0),(0, 1)]`

= `[(-118, -93),(31, -118)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Solved Examples [Page 50]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 3 Matrices
Solved Examples | Q 8 | Page 50

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'


For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2  1]`


If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that  A' A = I


For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(6, -2,2),(-2,3,-1),(2,-1,3)]`


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(1,5),(-1,2)]`


if A =`((5,a),(b,0))` is symmetric matrix show that a = b


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If a matrix A is both symmetric and skew-symmetric, then


If A = [aij] is a square matrix of even order such that aij = i2 − j2, then 


If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\]  is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is  


If A and B are matrices of the same order, then ABT − BAT is a 


The matrix   \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is

 


If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2 


Show that A′A and AA′ are both symmetric matrices for any matrix A.


If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


If A is skew-symmetric, then kA is a ______. (k is any scalar)


If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


If A is skew-symmetric matrix, then A2 is a symmetric matrix.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A = [aij] is a skew-symmetric matrix of order n, then ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×