Advertisements
Advertisements
Question
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
Solution
We have A2 = `[(2, 3),(-1, 2)] [(2, 3),(-1, 2)] = [(1, 12),(-4, 1)]`
– 4A = `[(-8, -12),(4, -8)]` and 7I = `[(7, 0),(0, 7)]`
Therefore, A2 – 4A + 7I = `[(1 - 8 + 7, 12 - 12 + 0),(-4 + 4 + 0, 1 - 8 + 7)]`
= `[(0, 0),(0, 0)]`
= O
⇒ A2 – 4A + 7I
Thus A3 = A.A2 = A(4A – 7I)
= 4(4A – 7I) – 7A
= 16A – 28I – 7A = 9A – 28I
and so A5 = A3A2
= (9A – 28I) (4A – 7I)
= 36A2 – 63A – 112A + 196I
= 36(4A – 7I) – 175A + 196I
= – 31A – 56I
= `-3"I"[(2, 3),(-1, 2)] -56[(1, 0),(0, 1)]`
= `[(-118, -93),(31, -118)]`
APPEARS IN
RELATED QUESTIONS
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
For the matrices A and B, verify that (AB)′ = B'A' where `A =[(1),(-4), (3)], B = [-1, 2 1]`
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(6, -2,2),(-2,3,-1),(2,-1,3)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
if A =`((5,a),(b,0))` is symmetric matrix show that a = b
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If a matrix A is both symmetric and skew-symmetric, then
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
If \[A = \begin{bmatrix}2 & 0 & - 3 \\ 4 & 3 & 1 \\ - 5 & 7 & 2\end{bmatrix}\] is expressed as the sum of a symmetric and skew-symmetric matrix, then the symmetric matrix is
If A and B are matrices of the same order, then ABT − BAT is a
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
If A is skew-symmetric, then kA is a ______. (k is any scalar)
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.